001     890097
005     20210208142407.0
024 7 _ |a 10.1016/j.jhydrol.2020.125140
|2 doi
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a 2128/27003
|2 Handle
024 7 _ |a WOS:000599754500004
|2 WOS
037 _ _ |a FZJ-2021-00686
082 _ _ |a 690
100 1 _ |a Li, Wanxin
|0 P:(DE-Juel1)180278
|b 0
245 _ _ |a Potential evaporation dynamics over saturated bare soil and an open water surface
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611573181_2888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Actual evaporation (Ea) can be calculated as a fraction of potential evaporation (PE), which refers to the evaporation rate if supply water is unlimited. Potential evaporation depends on the available energy and the underlying material, and different approaches to estimate potential evaporation exist nowadays. This study provides a detailed analysis of the evaporation dynamics over fully saturated, sandy soil (PEs) and an open water surface (PEw). Moreover, the performance of commonly used methods to estimate PE is assessed. At the basis of these analyses is a lysimeter experiment in the Guanzhong Basin, China, which allowed a precise measurement of PE with a very high temporal resolution. Temperature profiles in lysimeters and meteorological data were also measured during the experiment. A comparison of PEs and PEw was carried out for seven consecutive days (August 11th to 17th, 2016). Results show that PEw is smaller than PEs on a daily scale, with PEw rates being bigger than PEs at night but smaller during daytime. Furthermore, the temporal dynamics of PEw lags 4–5 h behind PEs. In accordance with the energy balance equation, PE dynamics are mainly governed by “available energy”. The PE rates calculated by Penman-Monteith (PM) and Priestly-Taylor (PT) based on these measurements were also evaluated. The measured PE is relatively well reproduced by PM and PT equations. Finally, the effect of using different approaches to estimate PE on calculating Ea was tested by an integrated hydrological model that calculates water flow in the unsaturated zone by solving the Richards equation. The relative differences were up to 17.5%.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brunner, Philip
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Li, Zhi
|b 2
700 1 _ |a Wang, Zhoufeng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Zhengyu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Wenke
|0 0000-0002-7259-7964
|b 5
|e Corresponding author
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 6
773 _ _ |a 10.1016/j.jhydrol.2020.125140
|g Vol. 590, p. 125140 -
|0 PERI:(DE-600)1473173-3
|p 125140 -
|t Journal of hydrology
|v 590
|y 2020
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/890097/files/manuscript_final.pdf
|y Published on 2020-07-10. Available in OpenAccess from 2022-07-10.
909 C O |o oai:juser.fz-juelich.de:890097
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HYDROL : 2018
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21