001     890102
005     20240712084520.0
024 7 _ |a 10.1038/s41566-019-0546-8
|2 doi
024 7 _ |a 1749-4885
|2 ISSN
024 7 _ |a 1749-4893
|2 ISSN
024 7 _ |a 10.34734/FZJ-2021-00691
|2 datacite_doi
024 7 _ |a WOS:000511124400013
|2 WOS
037 _ _ |a FZJ-2021-00691
082 _ _ |a 530
100 1 _ |a Feldmann, Sascha
|0 0000-0002-6583-5354
|b 0
245 _ _ |a Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712766213_8160
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Metal halide perovskites have emerged as exceptional semiconductors for optoelectronic applications. Substitution of the monovalent cations has advanced luminescence yields and device efficiencies. Here, we control the cation alloying to enhance optoelectronic performance through alteration of the charge carrier dynamics in mixed-halide perovskites. In contrast to single-halide perovskites, we find high luminescence yields for photoexcited carrier densities far below solar illumination conditions. Using time-resolved spectroscopy we show that the charge carrier recombination regime changes from second to first order within the first tens of nanoseconds after excitation. Supported by microscale mapping of the optical bandgap, electrically gated transport measurements and first-principles calculations, we demonstrate that spatially varying energetic disorder in the electronic states causes local charge accumulation, creating p- and n-type photodoped regions, which unearths a strategy for efficient light emission at low charge-injection in solar cells and light-emitting diodes.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a Helmholtz Young Investigators Group (HGF-YoungInvestigatorsGroup)
|0 G:(DE-HGF)HGF-YoungInvestigatorsGroup
|c HGF-YoungInvestigatorsGroup
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Macpherson, Stuart
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Senanayak, Satyaprasad P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Abdi-Jalebi, Mojtaba
|0 0000-0002-9430-6371
|b 3
700 1 _ |a Rivett, Jasmine P. H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nan, Guangjun
|0 0000-0002-5185-8336
|b 5
700 1 _ |a Tainter, Gregory D.
|0 0000-0003-0272-6940
|b 6
700 1 _ |a Doherty, Tiarnan A. S.
|0 0000-0003-1150-4012
|b 7
700 1 _ |a Frohna, Kyle
|0 0000-0002-2259-6154
|b 8
700 1 _ |a Ringe, Emilie
|0 0000-0003-3743-9204
|b 9
700 1 _ |a Friend, Richard H.
|0 0000-0001-6565-6308
|b 10
700 1 _ |a Sirringhaus, Henning
|0 0000-0001-9827-6061
|b 11
700 1 _ |a Saliba, Michael
|0 P:(DE-Juel1)180101
|b 12
700 1 _ |a Beljonne, David
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Stranks, Samuel D.
|0 0000-0002-8303-7292
|b 14
700 1 _ |a Deschler, Felix
|0 0000-0002-0771-3324
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41566-019-0546-8
|g Vol. 14, no. 2, p. 123 - 128
|0 PERI:(DE-600)2264673-5
|n 2
|p 123-128
|t Nature photonics
|v 14
|y 2020
|x 1749-4893
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890102/files/Feldmann_Macpherson_Main_accepted.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/890102/files/s41566-019-0546-8-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/890102/files/Feldmann_Macpherson_Main_accepted.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/890102/files/Feldmann_Macpherson_Main_accepted.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/890102/files/Feldmann_Macpherson_Main_accepted.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/890102/files/Feldmann_Macpherson_Main_accepted.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:890102
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)180101
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-28
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT PHOTONICS : 2018
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHOTONICS : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21