001     890103
005     20240712084520.0
024 7 _ |a 10.1002/advs.201902448
|2 doi
024 7 _ |a 2128/27019
|2 Handle
024 7 _ |a altmetric:81331364
|2 altmetric
024 7 _ |a 32670742
|2 pmid
024 7 _ |a WOS:000530825800001
|2 WOS
037 _ _ |a FZJ-2021-00692
082 _ _ |a 624
100 1 _ |a Siavash Moakhar, Roozbeh
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Recent Advances in Plasmonic Perovskite Solar Cells
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611583400_2888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Perovskite solar cells (PSCs) have emerged recently as promising candidates for next generation photovoltaics and have reached power conversion efficiencies of 25.2%. Among the various methods to advance solar cell technologies, the implementation of nanoparticles with plasmonic effects is an alternative way for photon and charge carrier management. Surface plasmons at the interfaces or surfaces of sophisticated metal nanostructures are able to interact with electromagnetic radiation. The properties of surface plasmons can be tuned specifically by controlling the shape, size, and dielectric environment of the metal nanostructures. Thus, incorporating metallic nanostructures in solar cells is reported as a possible strategy to explore the enhancement of energy conversion efficiency mainly in semi‐transparent solar cells. One particularly interesting option is PSCs with plasmonic structures enable thinner photovoltaic absorber layers without compromising their thickness while maintaining a high light harvest. In this Review, the effects of plasmonic nanostructures in electron transport material, perovskite absorbers, the hole transport material, as well as enhancement of effective refractive index of the medium and the resulting solar cell performance are presented. Aside from providing general considerations and a review of plasmonic nanostructures, the current efforts to introduce these plasmonic structures into semi‐transparent solar cells are outlined.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a Helmholtz Young Investigators Group (Helmholtz Young Investigators Group: Key Technologies)
|0 Helmholtz Young Investigators Group: Key Technologies
|c Helmholtz Young Investigators Group: Key Technologies
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gholipour, Somayeh
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Masudy‐Panah, Saeid
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Seza, Ashkan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mehdikhani, Ali
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Riahi‐Noori, Nastaran
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Tafazoli, Saeede
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Timasi, Nazanin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Lim, Yee‐Fun
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Saliba, Michael
|0 P:(DE-Juel1)180101
|b 9
|e Corresponding author
773 _ _ |a 10.1002/advs.201902448
|g Vol. 7, no. 13, p. 1902448 -
|0 PERI:(DE-600)2808093-2
|n 13
|p 1902448 -
|t Advanced science
|v 7
|y 2020
|x 2198-3844
856 4 _ |u https://juser.fz-juelich.de/record/890103/files/Main%20document.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890103
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180101
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV SCI : 2018
|d 2020-09-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV SCI : 2018
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21