000890109 001__ 890109 000890109 005__ 20240712084520.0 000890109 0247_ $$2doi$$a10.1002/adma.202003422 000890109 0247_ $$2ISSN$$a0935-9648 000890109 0247_ $$2ISSN$$a1521-4095 000890109 0247_ $$2Handle$$a2128/27037 000890109 0247_ $$2altmetric$$aaltmetric:88400800 000890109 0247_ $$2pmid$$a33480464 000890109 0247_ $$2WOS$$aWOS:000563870200001 000890109 037__ $$aFZJ-2021-00698 000890109 082__ $$a660 000890109 1001_ $$0P:(DE-HGF)0$$aLi, Meng$$b0 000890109 245__ $$aEmbedded Nickel‐Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source 000890109 260__ $$aWeinheim$$bWiley-VCH$$c2020 000890109 3367_ $$2DRIVER$$aarticle 000890109 3367_ $$2DataCite$$aOutput Types/Journal article 000890109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611595679_7088 000890109 3367_ $$2BibTeX$$aARTICLE 000890109 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890109 3367_ $$00$$2EndNote$$aJournal Article 000890109 520__ $$aThe rapid development of Internet of Things mobile terminals has accelerated the market's demand for portable mobile power supplies and flexible wearable devices. Here, an embedded metal‐mesh transparent conductive electrode (TCE) is prepared on poly(ethylene terephthalate) (PET) using a novel selective electrodeposition process combined with inverted film‐processing methods. This embedded nickel (Ni)‐mesh flexible TCE shows excellent photoelectric performance (sheet resistance of ≈0.2–0.5 Ω sq−1 at high transmittance of ≈85–87%) and mechanical durability. The PET/Ni‐mesh/polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS PH1000) hybrid electrode is used as a transparent electrode for perovskite solar cells (PSCs), which exhibit excellent electric properties and remarkable environmental and mechanical stability. A power conversion efficiency of 17.3% is obtained, which is the highest efficiency for a PSC based on flexible transparent metal electrodes to date. For perovskite crystals that require harsh growth conditions, their mechanical stability and environmental stability on flexible transparent embedded metal substrates are studied and improved. The resulting flexible device retains 76% of the original efficiency after 2000 bending cycles. The results of this work provide a step improvement in flexible PSCs. 000890109 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0 000890109 536__ $$0Helmholtz Young Investigators Group: Key Technologies$$aHelmholtz Young Investigators Group (Helmholtz Young Investigators Group: Key Technologies)$$cHelmholtz Young Investigators Group: Key Technologies$$x1 000890109 588__ $$aDataset connected to CrossRef 000890109 7001_ $$0P:(DE-HGF)0$$aZuo, Wei‐Wei$$b1 000890109 7001_ $$0P:(DE-HGF)0$$aRicciardulli, Antonio Gaetano$$b2 000890109 7001_ $$0P:(DE-HGF)0$$aYang, Ying‐Guo$$b3 000890109 7001_ $$0P:(DE-HGF)0$$aLiu, Yan‐Hua$$b4 000890109 7001_ $$0P:(DE-Juel1)176890$$aWang, Qiong$$b5 000890109 7001_ $$0P:(DE-HGF)0$$aWang, Kai‐Li$$b6 000890109 7001_ $$0P:(DE-HGF)0$$aLi, Gui‐Xiang$$b7 000890109 7001_ $$0P:(DE-Juel1)180101$$aSaliba, Michael$$b8$$eCorresponding author 000890109 7001_ $$0P:(DE-HGF)0$$aDi Girolamo, Diego$$b9 000890109 7001_ $$00000-0002-3012-3541$$aAbate, Antonio$$b10 000890109 7001_ $$0P:(DE-HGF)0$$aWang, Zhao‐Kui$$b11 000890109 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.202003422$$gVol. 32, no. 38, p. 2003422 -$$n38$$p2003422 -$$tAdvanced materials$$v32$$x1521-4095$$y2020 000890109 8564_ $$uhttps://juser.fz-juelich.de/record/890109/files/adma.202003422.pdf$$yOpenAccess 000890109 909CO $$ooai:juser.fz-juelich.de:890109$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000890109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180101$$aForschungszentrum Jülich$$b8$$kFZJ 000890109 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000890109 9141_ $$y2020 000890109 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-10-13 000890109 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000890109 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-13$$wger 000890109 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2018$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000890109 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2018$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13 000890109 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-13$$wger 000890109 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13 000890109 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0 000890109 9801_ $$aFullTexts 000890109 980__ $$ajournal 000890109 980__ $$aVDB 000890109 980__ $$aUNRESTRICTED 000890109 980__ $$aI:(DE-Juel1)IEK-5-20101013 000890109 981__ $$aI:(DE-Juel1)IMD-3-20101013