000890109 001__ 890109
000890109 005__ 20240712084520.0
000890109 0247_ $$2doi$$a10.1002/adma.202003422
000890109 0247_ $$2ISSN$$a0935-9648
000890109 0247_ $$2ISSN$$a1521-4095
000890109 0247_ $$2Handle$$a2128/27037
000890109 0247_ $$2altmetric$$aaltmetric:88400800
000890109 0247_ $$2pmid$$a33480464
000890109 0247_ $$2WOS$$aWOS:000563870200001
000890109 037__ $$aFZJ-2021-00698
000890109 082__ $$a660
000890109 1001_ $$0P:(DE-HGF)0$$aLi, Meng$$b0
000890109 245__ $$aEmbedded Nickel‐Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source
000890109 260__ $$aWeinheim$$bWiley-VCH$$c2020
000890109 3367_ $$2DRIVER$$aarticle
000890109 3367_ $$2DataCite$$aOutput Types/Journal article
000890109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611595679_7088
000890109 3367_ $$2BibTeX$$aARTICLE
000890109 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890109 3367_ $$00$$2EndNote$$aJournal Article
000890109 520__ $$aThe rapid development of Internet of Things mobile terminals has accelerated the market's demand for portable mobile power supplies and flexible wearable devices. Here, an embedded metal‐mesh transparent conductive electrode (TCE) is prepared on poly(ethylene terephthalate) (PET) using a novel selective electrodeposition process combined with inverted film‐processing methods. This embedded nickel (Ni)‐mesh flexible TCE shows excellent photoelectric performance (sheet resistance of ≈0.2–0.5 Ω sq−1 at high transmittance of ≈85–87%) and mechanical durability. The PET/Ni‐mesh/polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS PH1000) hybrid electrode is used as a transparent electrode for perovskite solar cells (PSCs), which exhibit excellent electric properties and remarkable environmental and mechanical stability. A power conversion efficiency of 17.3% is obtained, which is the highest efficiency for a PSC based on flexible transparent metal electrodes to date. For perovskite crystals that require harsh growth conditions, their mechanical stability and environmental stability on flexible transparent embedded metal substrates are studied and improved. The resulting flexible device retains 76% of the original efficiency after 2000 bending cycles. The results of this work provide a step improvement in flexible PSCs.
000890109 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000890109 536__ $$0Helmholtz Young Investigators Group: Key Technologies$$aHelmholtz Young Investigators Group (Helmholtz Young Investigators Group: Key Technologies)$$cHelmholtz Young Investigators Group: Key Technologies$$x1
000890109 588__ $$aDataset connected to CrossRef
000890109 7001_ $$0P:(DE-HGF)0$$aZuo, Wei‐Wei$$b1
000890109 7001_ $$0P:(DE-HGF)0$$aRicciardulli, Antonio Gaetano$$b2
000890109 7001_ $$0P:(DE-HGF)0$$aYang, Ying‐Guo$$b3
000890109 7001_ $$0P:(DE-HGF)0$$aLiu, Yan‐Hua$$b4
000890109 7001_ $$0P:(DE-Juel1)176890$$aWang, Qiong$$b5
000890109 7001_ $$0P:(DE-HGF)0$$aWang, Kai‐Li$$b6
000890109 7001_ $$0P:(DE-HGF)0$$aLi, Gui‐Xiang$$b7
000890109 7001_ $$0P:(DE-Juel1)180101$$aSaliba, Michael$$b8$$eCorresponding author
000890109 7001_ $$0P:(DE-HGF)0$$aDi Girolamo, Diego$$b9
000890109 7001_ $$00000-0002-3012-3541$$aAbate, Antonio$$b10
000890109 7001_ $$0P:(DE-HGF)0$$aWang, Zhao‐Kui$$b11
000890109 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.202003422$$gVol. 32, no. 38, p. 2003422 -$$n38$$p2003422 -$$tAdvanced materials$$v32$$x1521-4095$$y2020
000890109 8564_ $$uhttps://juser.fz-juelich.de/record/890109/files/adma.202003422.pdf$$yOpenAccess
000890109 909CO $$ooai:juser.fz-juelich.de:890109$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180101$$aForschungszentrum Jülich$$b8$$kFZJ
000890109 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890109 9141_ $$y2020
000890109 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-10-13
000890109 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890109 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-13$$wger
000890109 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2018$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890109 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2018$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000890109 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-10-13$$wger
000890109 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000890109 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000890109 9801_ $$aFullTexts
000890109 980__ $$ajournal
000890109 980__ $$aVDB
000890109 980__ $$aUNRESTRICTED
000890109 980__ $$aI:(DE-Juel1)IEK-5-20101013
000890109 981__ $$aI:(DE-Juel1)IMD-3-20101013