001     890109
005     20240712084520.0
024 7 _ |a 10.1002/adma.202003422
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/27037
|2 Handle
024 7 _ |a altmetric:88400800
|2 altmetric
024 7 _ |a 33480464
|2 pmid
024 7 _ |a WOS:000563870200001
|2 WOS
037 _ _ |a FZJ-2021-00698
082 _ _ |a 660
100 1 _ |a Li, Meng
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Embedded Nickel‐Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611595679_7088
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The rapid development of Internet of Things mobile terminals has accelerated the market's demand for portable mobile power supplies and flexible wearable devices. Here, an embedded metal‐mesh transparent conductive electrode (TCE) is prepared on poly(ethylene terephthalate) (PET) using a novel selective electrodeposition process combined with inverted film‐processing methods. This embedded nickel (Ni)‐mesh flexible TCE shows excellent photoelectric performance (sheet resistance of ≈0.2–0.5 Ω sq−1 at high transmittance of ≈85–87%) and mechanical durability. The PET/Ni‐mesh/polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS PH1000) hybrid electrode is used as a transparent electrode for perovskite solar cells (PSCs), which exhibit excellent electric properties and remarkable environmental and mechanical stability. A power conversion efficiency of 17.3% is obtained, which is the highest efficiency for a PSC based on flexible transparent metal electrodes to date. For perovskite crystals that require harsh growth conditions, their mechanical stability and environmental stability on flexible transparent embedded metal substrates are studied and improved. The resulting flexible device retains 76% of the original efficiency after 2000 bending cycles. The results of this work provide a step improvement in flexible PSCs.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a Helmholtz Young Investigators Group (Helmholtz Young Investigators Group: Key Technologies)
|0 Helmholtz Young Investigators Group: Key Technologies
|c Helmholtz Young Investigators Group: Key Technologies
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zuo, Wei‐Wei
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ricciardulli, Antonio Gaetano
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yang, Ying‐Guo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Yan‐Hua
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Qiong
|0 P:(DE-Juel1)176890
|b 5
700 1 _ |a Wang, Kai‐Li
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Gui‐Xiang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Saliba, Michael
|0 P:(DE-Juel1)180101
|b 8
|e Corresponding author
700 1 _ |a Di Girolamo, Diego
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Abate, Antonio
|0 0000-0002-3012-3541
|b 10
700 1 _ |a Wang, Zhao‐Kui
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1002/adma.202003422
|g Vol. 32, no. 38, p. 2003422 -
|0 PERI:(DE-600)1474949-x
|n 38
|p 2003422 -
|t Advanced materials
|v 32
|y 2020
|x 1521-4095
856 4 _ |u https://juser.fz-juelich.de/record/890109/files/adma.202003422.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890109
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180101
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-10-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21