000890116 001__ 890116
000890116 005__ 20220930130304.0
000890116 0247_ $$2doi$$a10.1371/journal.pone.0245580
000890116 0247_ $$2Handle$$a2128/26997
000890116 0247_ $$2pmid$$a33481896
000890116 0247_ $$2WOS$$aWOS:000612929300161
000890116 037__ $$aFZJ-2021-00705
000890116 082__ $$a610
000890116 1001_ $$0P:(DE-Juel1)171754$$aBrambilla, Cláudia Régio$$b0$$eCorresponding author
000890116 245__ $$aBias evaluation and reduction in 3D OP-OSEM reconstruction in dynamic equilibrium PET studies with 11C-labeled for binding potential analysis
000890116 260__ $$aSan Francisco, California, US$$bPLOS$$c2021
000890116 3367_ $$2DRIVER$$aarticle
000890116 3367_ $$2DataCite$$aOutput Types/Journal article
000890116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645540931_17118
000890116 3367_ $$2BibTeX$$aARTICLE
000890116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890116 3367_ $$00$$2EndNote$$aJournal Article
000890116 520__ $$aIterative image reconstruction is widely used in positron emission tomography. However, it is known to contribute to quantitation bias and is particularly pronounced during dynamic studies with 11C-labeled radiotracers where count rates become low towards the end of the acquisition. As the strength of the quantitation bias depends on the counts in the reconstructed frame, it can differ from frame to frame of the acquisition. This is especially relevant in the case of neuro-receptor studies with simultaneous PET/MR when a bolus-infusion protocol is applied to allow the comparison of pre- and post-task effects. Here, count dependent changes in quantitation bias may interfere with task changes. We evaluated the impact of different framing schemes on quantitation bias and its propagation into binding potential (BP) using a phantom decay study with 11C and 3D OP-OSEM. Further, we propose a framing scheme that keeps the true counts per frame constant over the acquisition time as constant framing schemes and conventional increasing framing schemes are unlikely to achieve stable bias values during the acquisition time range. For a constant framing scheme with 5 minutes frames, the BP bias was 7.13±2.01% (10.8% to 3.8%) compared to 5.63±2.85% (7.8% to 4.0%) for conventional increasing framing schemes. Using the proposed constant true counts framing scheme, a stabilization of the BP bias was achieved at 2.56±3.92% (3.5% to 1.7%). The change in BP bias was further studied by evaluating the linear slope during the acquisition time interval. The lowest slope values were observed in the constant true counts framing scheme. The constant true counts framing scheme was effective for BP bias stabilization at relevant activity and time ranges. The mean BP bias under these conditions was 2.56±3.92%, which represents the lower limit for the detection of changes in BP during equilibrium and is especially important in the case of cognitive tasks where the expected changes are low.
000890116 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000890116 588__ $$aDataset connected to CrossRef
000890116 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jürgen$$b1
000890116 7001_ $$0P:(DE-Juel1)177036$$aIssa, Ahlam$$b2
000890116 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b3
000890116 7001_ $$0P:(DE-Juel1)131768$$aHerzog, Hans$$b4
000890116 7001_ $$0P:(DE-Juel1)131788$$aRota Kops, Elena$$b5
000890116 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b6
000890116 7001_ $$0P:(DE-Juel1)131781$$aNeuner, Irene$$b7
000890116 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph W.$$b8
000890116 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0245580$$gVol. 16, no. 1, p. e0245580 -$$n1$$pe0245580 -$$tPLOS ONE$$v16$$x1932-6203$$y2021
000890116 8564_ $$uhttps://juser.fz-juelich.de/record/890116/files/January%202021%20Invoice%20PAB314740.pdf
000890116 8564_ $$uhttps://juser.fz-juelich.de/record/890116/files/journal.pone.0245580.pdf$$yOpenAccess
000890116 8767_ $$d2021-02-18$$eAPC$$jDeposit$$lDeposit: PLoS$$z1695 $
000890116 909CO $$ooai:juser.fz-juelich.de:890116$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171754$$aForschungszentrum Jülich$$b0$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b1$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177036$$aForschungszentrum Jülich$$b2$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b3$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131768$$aForschungszentrum Jülich$$b4$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131788$$aForschungszentrum Jülich$$b5$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131781$$aForschungszentrum Jülich$$b7$$kFZJ
000890116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b8$$kFZJ
000890116 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000890116 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000890116 9141_ $$y2021
000890116 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2018$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890116 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-32
000890116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000890116 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000890116 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000890116 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000890116 980__ $$ajournal
000890116 980__ $$aVDB
000890116 980__ $$aI:(DE-Juel1)INM-4-20090406
000890116 980__ $$aI:(DE-Juel1)INM-11-20170113
000890116 980__ $$aI:(DE-Juel1)VDB1046
000890116 980__ $$aAPC
000890116 980__ $$aUNRESTRICTED
000890116 9801_ $$aAPC
000890116 9801_ $$aFullTexts