000890117 001__ 890117
000890117 005__ 20240712113016.0
000890117 0247_ $$2doi$$a10.1039/D0RA07706B
000890117 0247_ $$2Handle$$a2128/27219
000890117 0247_ $$2altmetric$$aaltmetric:94952364
000890117 0247_ $$2WOS$$aWOS:000592897600023
000890117 037__ $$aFZJ-2021-00706
000890117 041__ $$aEnglish
000890117 082__ $$a540
000890117 1001_ $$0P:(DE-HGF)0$$aRaievska, Oleksandra$$b0
000890117 245__ $$aUltra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties
000890117 260__ $$aLondon$$bRSC Publishing$$c2020
000890117 3367_ $$2DRIVER$$aarticle
000890117 3367_ $$2DataCite$$aOutput Types/Journal article
000890117 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614016511_11901
000890117 3367_ $$2BibTeX$$aARTICLE
000890117 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890117 3367_ $$00$$2EndNote$$aJournal Article
000890117 520__ $$aWe introduce a direct aqueous synthesis of luminescent 2-3 nm Ag-In-Se (AISe) quantum dots (QDs) capped by glutathione (GSH) complexes, where sodium selenosulfate Na2SeSO3 is used as a stable Se2- precursor. A series of size-selected AISe QDs with distinctly different positions of absorption and PL bands can be separated from the original QD ensembles by using anti-solvent-induced size-selective precipitation. The AISe-GSH QDs emit broadband PL with the band maximum varying from 1.65 eV (750 nm) to 1.90 eV (650 nm) depending on the average QD size and composition. The PL quantum yield varies strongly with basic synthesis parameters (ratios of constituents, Zn addition, duration of thermal treatment, etc.) reaching 4% for “core” AISe and 12% for “core/shell” AISe/ZnS QDs. The shape and position of PL bands is interpreted in terms of the model of radiative recombination of a self-trapped exciton. The AISe-GSH QDs reveal phonon Raman spectra characteristic for small and Ag-deficient tetragonal Ag-In-Se QDs. The ability of ultra-small AISe QDs to support such "bulk-like" vibrations can be used for future deeper insights into structural and optical properties of this relatively new sort of QDs.
000890117 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000890117 536__ $$0G:(DE-HGF)POF3-530$$a530 - Science and Technology of Nanosystems (POF3-500)$$cPOF3-500$$fPOF III$$x1
000890117 588__ $$aDataset connected to CrossRef
000890117 7001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b1
000890117 7001_ $$00000-0002-7839-9862$$aDzhagan, Volodymyr$$b2
000890117 7001_ $$00000-0002-1699-9344$$aSolonenko, Dmytro$$b3
000890117 7001_ $$00000-0002-8455-4582$$aZahn, Dietrich R. T.$$b4$$eCorresponding author
000890117 773__ $$0PERI:(DE-600)2623224-8$$a10.1039/D0RA07706B$$gVol. 10, no. 69, p. 42178 - 42193$$n69$$p42178 - 42193$$tRSC Advances$$v10$$x2046-2069$$y2020
000890117 8564_ $$uhttps://juser.fz-juelich.de/record/890117/files/AISe_GSH_paper_R1_SI_final.pdf$$yRestricted
000890117 8564_ $$uhttps://juser.fz-juelich.de/record/890117/files/d0ra07706b.pdf$$yOpenAccess
000890117 909CO $$ooai:juser.fz-juelich.de:890117$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b1$$kFZJ
000890117 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000890117 9130_ $$1G:(DE-HGF)POF3-530$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lScience and Technology of Nanosystems$$x1
000890117 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890117 9141_ $$y2021
000890117 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000890117 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRSC ADV : 2018$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890117 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000890117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000890117 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000890117 920__ $$lyes
000890117 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890117 9801_ $$aFullTexts
000890117 980__ $$ajournal
000890117 980__ $$aVDB
000890117 980__ $$aUNRESTRICTED
000890117 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890117 981__ $$aI:(DE-Juel1)IET-2-20140314