001     890117
005     20240712113016.0
024 7 _ |a 10.1039/D0RA07706B
|2 doi
024 7 _ |a 2128/27219
|2 Handle
024 7 _ |a altmetric:94952364
|2 altmetric
024 7 _ |a WOS:000592897600023
|2 WOS
037 _ _ |a FZJ-2021-00706
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Raievska, Oleksandra
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties
260 _ _ |a London
|c 2020
|b RSC Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614016511_11901
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We introduce a direct aqueous synthesis of luminescent 2-3 nm Ag-In-Se (AISe) quantum dots (QDs) capped by glutathione (GSH) complexes, where sodium selenosulfate Na2SeSO3 is used as a stable Se2- precursor. A series of size-selected AISe QDs with distinctly different positions of absorption and PL bands can be separated from the original QD ensembles by using anti-solvent-induced size-selective precipitation. The AISe-GSH QDs emit broadband PL with the band maximum varying from 1.65 eV (750 nm) to 1.90 eV (650 nm) depending on the average QD size and composition. The PL quantum yield varies strongly with basic synthesis parameters (ratios of constituents, Zn addition, duration of thermal treatment, etc.) reaching 4% for “core” AISe and 12% for “core/shell” AISe/ZnS QDs. The shape and position of PL bands is interpreted in terms of the model of radiative recombination of a self-trapped exciton. The AISe-GSH QDs reveal phonon Raman spectra characteristic for small and Ag-deficient tetragonal Ag-In-Se QDs. The ability of ultra-small AISe QDs to support such "bulk-like" vibrations can be used for future deeper insights into structural and optical properties of this relatively new sort of QDs.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a 530 - Science and Technology of Nanosystems (POF3-500)
|0 G:(DE-HGF)POF3-530
|c POF3-500
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stroyuk, Oleksandr
|0 P:(DE-Juel1)178670
|b 1
700 1 _ |a Dzhagan, Volodymyr
|0 0000-0002-7839-9862
|b 2
700 1 _ |a Solonenko, Dmytro
|0 0000-0002-1699-9344
|b 3
700 1 _ |a Zahn, Dietrich R. T.
|0 0000-0002-8455-4582
|b 4
|e Corresponding author
773 _ _ |a 10.1039/D0RA07706B
|g Vol. 10, no. 69, p. 42178 - 42193
|0 PERI:(DE-600)2623224-8
|n 69
|p 42178 - 42193
|t RSC Advances
|v 10
|y 2020
|x 2046-2069
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/890117/files/AISe_GSH_paper_R1_SI_final.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890117/files/d0ra07706b.pdf
909 C O |o oai:juser.fz-juelich.de:890117
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178670
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Science and Technology of Nanosystems
|1 G:(DE-HGF)POF3-530
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RSC ADV : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21