000890122 001__ 890122
000890122 005__ 20240712113016.0
000890122 0247_ $$2doi$$a10.1021/acs.jpcc.0c03268
000890122 0247_ $$2ISSN$$a1932-7447
000890122 0247_ $$2ISSN$$a1932-7455
000890122 0247_ $$2Handle$$a2128/27415
000890122 0247_ $$2WOS$$aWOS:000551543800062
000890122 037__ $$aFZJ-2021-00711
000890122 041__ $$aEnglish
000890122 082__ $$a530
000890122 1001_ $$00000-0002-7839-9862$$aDzhagan, Volodymyr$$b0$$eCorresponding author
000890122 245__ $$aPhonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size
000890122 260__ $$aWashington, DC$$bSoc.$$c2020
000890122 3367_ $$2DRIVER$$aarticle
000890122 3367_ $$2DataCite$$aOutput Types/Journal article
000890122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615817571_31766
000890122 3367_ $$2BibTeX$$aARTICLE
000890122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890122 3367_ $$00$$2EndNote$$aJournal Article
000890122 520__ $$aWe present a detailed analysis of Raman and infrared (IR) phonon spectra of strongly luminescent non-stoichiometric M-In-S (M = Cu, Ag, Hg) and core/shell M-In-S/ZnS nanocrystals (NCs) of small size (d  2-4 nm), formed by means of aqueous colloidal chemistry under mild conditions. Despite presumably similar factors determining position and broadening of the Raman and X-ray diffraction (XRD) peaks, phonon spectra are shown to be more sensitive to NC composition and crystals structure. The spectral Raman pattern of these strongly M-deficient M-In-S NCs is different from that of the corresponding stoichiometric phases, e.g. CuInS2 or AgIn5S8, and excludes its assignment to relevant binary sulfides, e.g. In2S3. Resonant behavior of relative peak intensities in Raman spectra is different from that of larger-size stoichiometric NCs and bulk samples studied before, while the temperature dependence reveals an analogous enhancement of the highest-frequency LO modes supporting an unambiguous assignment of the latter. Therefore, we conclude that the Raman spectra observed are characteristic of the specific structure of these highly non-stoichiometric small NCs. IR modes of these NCs occur in the same frequency range as the Raman ones but at higher frequencies than the IR phonons in bulk material. The IR spectra are less characteristic, compared to Raman ones, revealing more similarity among the three NC compounds and with the bulk counterparts.
000890122 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000890122 536__ $$0G:(DE-HGF)POF3-530$$a530 - Science and Technology of Nanosystems (POF3-500)$$cPOF3-500$$fPOF III$$x1
000890122 588__ $$aDataset connected to CrossRef
000890122 7001_ $$00000-0002-4883-2311$$aSelyshchev, Oleksandr$$b1
000890122 7001_ $$0P:(DE-HGF)0$$aRaievska, Oleksandra$$b2
000890122 7001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b3
000890122 7001_ $$0P:(DE-HGF)0$$aHertling, Lukas$$b4
000890122 7001_ $$0P:(DE-HGF)0$$aMazur, Nazar$$b5
000890122 7001_ $$0P:(DE-HGF)0$$aValakh, Mykhailo Ya.$$b6
000890122 7001_ $$00000-0002-8455-4582$$aZahn, Dietrich R. T.$$b7
000890122 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.0c03268$$gVol. 124, no. 28, p. 15511 - 15522$$n28$$p15511 - 15522$$tThe journal of physical chemistry <Washington, DC> / C$$v124$$x1932-7455$$y2020
000890122 8564_ $$uhttps://juser.fz-juelich.de/record/890122/files/acs.jpcc.0c03268.pdf$$yRestricted
000890122 8564_ $$uhttps://juser.fz-juelich.de/record/890122/files/paper_phonons_MIS-ZMIS_NCs_JPCC_rev.pdf$$yPublished on 2020-06-23. Available in OpenAccess from 2021-06-23.
000890122 8564_ $$uhttps://juser.fz-juelich.de/record/890122/files/paper_phonons_MIS-ZMIS_NCs_SI_JPCC_rev.docx$$yRestricted
000890122 909CO $$ooai:juser.fz-juelich.de:890122$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b3$$kFZJ
000890122 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000890122 9130_ $$1G:(DE-HGF)POF3-530$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lScience and Technology of Nanosystems$$x1
000890122 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890122 9141_ $$y2021
000890122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890122 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2018$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000890122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000890122 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890122 9801_ $$aFullTexts
000890122 980__ $$ajournal
000890122 980__ $$aVDB
000890122 980__ $$aUNRESTRICTED
000890122 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890122 981__ $$aI:(DE-Juel1)IET-2-20140314