001     890122
005     20240712113016.0
024 7 _ |a 10.1021/acs.jpcc.0c03268
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/27415
|2 Handle
024 7 _ |a WOS:000551543800062
|2 WOS
037 _ _ |a FZJ-2021-00711
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Dzhagan, Volodymyr
|0 0000-0002-7839-9862
|b 0
|e Corresponding author
245 _ _ |a Phonon Spectra of Strongly Luminescent Nonstoichiometric Ag–In–S, Cu–In–S, and Hg–In–S Nanocrystals of Small Size
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615817571_31766
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a detailed analysis of Raman and infrared (IR) phonon spectra of strongly luminescent non-stoichiometric M-In-S (M = Cu, Ag, Hg) and core/shell M-In-S/ZnS nanocrystals (NCs) of small size (d  2-4 nm), formed by means of aqueous colloidal chemistry under mild conditions. Despite presumably similar factors determining position and broadening of the Raman and X-ray diffraction (XRD) peaks, phonon spectra are shown to be more sensitive to NC composition and crystals structure. The spectral Raman pattern of these strongly M-deficient M-In-S NCs is different from that of the corresponding stoichiometric phases, e.g. CuInS2 or AgIn5S8, and excludes its assignment to relevant binary sulfides, e.g. In2S3. Resonant behavior of relative peak intensities in Raman spectra is different from that of larger-size stoichiometric NCs and bulk samples studied before, while the temperature dependence reveals an analogous enhancement of the highest-frequency LO modes supporting an unambiguous assignment of the latter. Therefore, we conclude that the Raman spectra observed are characteristic of the specific structure of these highly non-stoichiometric small NCs. IR modes of these NCs occur in the same frequency range as the Raman ones but at higher frequencies than the IR phonons in bulk material. The IR spectra are less characteristic, compared to Raman ones, revealing more similarity among the three NC compounds and with the bulk counterparts.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a 530 - Science and Technology of Nanosystems (POF3-500)
|0 G:(DE-HGF)POF3-530
|c POF3-500
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Selyshchev, Oleksandr
|0 0000-0002-4883-2311
|b 1
700 1 _ |a Raievska, Oleksandra
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stroyuk, Oleksandr
|0 P:(DE-Juel1)178670
|b 3
700 1 _ |a Hertling, Lukas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mazur, Nazar
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Valakh, Mykhailo Ya.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zahn, Dietrich R. T.
|0 0000-0002-8455-4582
|b 7
773 _ _ |a 10.1021/acs.jpcc.0c03268
|g Vol. 124, no. 28, p. 15511 - 15522
|0 PERI:(DE-600)2256522-X
|n 28
|p 15511 - 15522
|t The journal of physical chemistry / C
|v 124
|y 2020
|x 1932-7455
856 4 _ |u https://juser.fz-juelich.de/record/890122/files/acs.jpcc.0c03268.pdf
|y Restricted
856 4 _ |y Published on 2020-06-23. Available in OpenAccess from 2021-06-23.
|u https://juser.fz-juelich.de/record/890122/files/paper_phonons_MIS-ZMIS_NCs_JPCC_rev.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/890122/files/paper_phonons_MIS-ZMIS_NCs_SI_JPCC_rev.docx
909 C O |o oai:juser.fz-juelich.de:890122
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)178670
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Science and Technology of Nanosystems
|1 G:(DE-HGF)POF3-530
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2018
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21