000890124 001__ 890124
000890124 005__ 20240712113016.0
000890124 0247_ $$2doi$$a10.1016/j.solener.2020.04.019
000890124 0247_ $$2ISSN$$a0038-092X
000890124 0247_ $$2ISSN$$a1471-1257
000890124 0247_ $$2Handle$$a2128/27320
000890124 0247_ $$2WOS$$aWOS:000579879500003
000890124 037__ $$aFZJ-2021-00713
000890124 082__ $$a530
000890124 1001_ $$00000-0001-8427-0718$$aYang, Dazhi$$b0$$eCorresponding author
000890124 245__ $$aVerification of deterministic solar forecasts
000890124 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000890124 3367_ $$2DRIVER$$aarticle
000890124 3367_ $$2DataCite$$aOutput Types/Journal article
000890124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615277396_26834
000890124 3367_ $$2BibTeX$$aARTICLE
000890124 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890124 3367_ $$00$$2EndNote$$aJournal Article
000890124 520__ $$aThe field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observa tions, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework.Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods.
000890124 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000890124 588__ $$aDataset connected to CrossRef
000890124 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000890124 7001_ $$00000-0002-7382-1294$$aAlessandrini, Stefano$$b1
000890124 7001_ $$0P:(DE-HGF)0$$aAntonanzas, Javier$$b2
000890124 7001_ $$0P:(DE-HGF)0$$aAntonanzas-Torres, Fernando$$b3
000890124 7001_ $$0P:(DE-HGF)0$$aBadescu, Viorel$$b4
000890124 7001_ $$0P:(DE-HGF)0$$aBeyer, Hans Georg$$b5
000890124 7001_ $$00000-0001-9379-9701$$aBlaga, Robert$$b6
000890124 7001_ $$00000-0003-0362-4655$$aBoland, John$$b7
000890124 7001_ $$0P:(DE-HGF)0$$aBright, Jamie M.$$b8
000890124 7001_ $$0P:(DE-HGF)0$$aCoimbra, Carlos F. M.$$b9
000890124 7001_ $$00000-0002-4134-7196$$aDavid, Mathieu$$b10
000890124 7001_ $$0P:(DE-HGF)0$$aFrimane, Âzeddine$$b11
000890124 7001_ $$0P:(DE-HGF)0$$aGueymard, Christian A.$$b12
000890124 7001_ $$0P:(DE-Juel1)166229$$aHong, Tao$$b13
000890124 7001_ $$0P:(DE-HGF)0$$aKay, Merlinde J.$$b14
000890124 7001_ $$00000-0003-2959-6146$$aKillinger, Sven$$b15
000890124 7001_ $$0P:(DE-HGF)0$$aKleissl, Jan$$b16
000890124 7001_ $$00000-0003-2574-0745$$aLauret, Philippe$$b17
000890124 7001_ $$0P:(DE-HGF)0$$aLorenz, Elke$$b18
000890124 7001_ $$00000-0001-8197-5181$$avan der Meer, Dennis$$b19
000890124 7001_ $$0P:(DE-HGF)0$$aPaulescu, Marius$$b20
000890124 7001_ $$0P:(DE-HGF)0$$aPerez, Richard$$b21
000890124 7001_ $$0P:(DE-HGF)0$$aPerpiñán-Lamigueiro, Oscar$$b22
000890124 7001_ $$0P:(DE-Juel1)179536$$aPeters, Ian Marius$$b23
000890124 7001_ $$00000-0003-1132-7589$$aReikard, Gordon$$b24
000890124 7001_ $$0P:(DE-HGF)0$$aRenné, David$$b25
000890124 7001_ $$0P:(DE-HGF)0$$aSaint-Drenan, Yves-Marie$$b26
000890124 7001_ $$00000-0003-0242-7377$$aShuai, Yong$$b27
000890124 7001_ $$00000-0003-2977-5697$$aUrraca, Ruben$$b28
000890124 7001_ $$00000-0002-9465-3453$$aVerbois, Hadrien$$b29
000890124 7001_ $$0P:(DE-HGF)0$$aVignola, Frank$$b30
000890124 7001_ $$0P:(DE-HGF)0$$aVoyant, Cyril$$b31
000890124 7001_ $$0P:(DE-HGF)0$$aZhang, Jie$$b32
000890124 773__ $$0PERI:(DE-600)2015126-3$$a10.1016/j.solener.2020.04.019$$gVol. 210, p. 20 - 37$$p20 - 37$$tSolar energy$$v210$$x0038-092X$$y2020
000890124 8564_ $$uhttps://juser.fz-juelich.de/record/890124/files/1906%20manuscript.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000890124 909CO $$ooai:juser.fz-juelich.de:890124$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179536$$aForschungszentrum Jülich$$b23$$kFZJ
000890124 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890124 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890124 9141_ $$y2021
000890124 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL ENERGY : 2018$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890124 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000890124 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000890124 920__ $$lyes
000890124 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890124 9801_ $$aFullTexts
000890124 980__ $$ajournal
000890124 980__ $$aVDB
000890124 980__ $$aUNRESTRICTED
000890124 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890124 981__ $$aI:(DE-Juel1)IET-2-20140314