000890124 001__ 890124 000890124 005__ 20240712113016.0 000890124 0247_ $$2doi$$a10.1016/j.solener.2020.04.019 000890124 0247_ $$2ISSN$$a0038-092X 000890124 0247_ $$2ISSN$$a1471-1257 000890124 0247_ $$2Handle$$a2128/27320 000890124 0247_ $$2WOS$$aWOS:000579879500003 000890124 037__ $$aFZJ-2021-00713 000890124 082__ $$a530 000890124 1001_ $$00000-0001-8427-0718$$aYang, Dazhi$$b0$$eCorresponding author 000890124 245__ $$aVerification of deterministic solar forecasts 000890124 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020 000890124 3367_ $$2DRIVER$$aarticle 000890124 3367_ $$2DataCite$$aOutput Types/Journal article 000890124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615277396_26834 000890124 3367_ $$2BibTeX$$aARTICLE 000890124 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890124 3367_ $$00$$2EndNote$$aJournal Article 000890124 520__ $$aThe field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observa tions, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework.Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods. 000890124 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0 000890124 588__ $$aDataset connected to CrossRef 000890124 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0 000890124 7001_ $$00000-0002-7382-1294$$aAlessandrini, Stefano$$b1 000890124 7001_ $$0P:(DE-HGF)0$$aAntonanzas, Javier$$b2 000890124 7001_ $$0P:(DE-HGF)0$$aAntonanzas-Torres, Fernando$$b3 000890124 7001_ $$0P:(DE-HGF)0$$aBadescu, Viorel$$b4 000890124 7001_ $$0P:(DE-HGF)0$$aBeyer, Hans Georg$$b5 000890124 7001_ $$00000-0001-9379-9701$$aBlaga, Robert$$b6 000890124 7001_ $$00000-0003-0362-4655$$aBoland, John$$b7 000890124 7001_ $$0P:(DE-HGF)0$$aBright, Jamie M.$$b8 000890124 7001_ $$0P:(DE-HGF)0$$aCoimbra, Carlos F. M.$$b9 000890124 7001_ $$00000-0002-4134-7196$$aDavid, Mathieu$$b10 000890124 7001_ $$0P:(DE-HGF)0$$aFrimane, Âzeddine$$b11 000890124 7001_ $$0P:(DE-HGF)0$$aGueymard, Christian A.$$b12 000890124 7001_ $$0P:(DE-Juel1)166229$$aHong, Tao$$b13 000890124 7001_ $$0P:(DE-HGF)0$$aKay, Merlinde J.$$b14 000890124 7001_ $$00000-0003-2959-6146$$aKillinger, Sven$$b15 000890124 7001_ $$0P:(DE-HGF)0$$aKleissl, Jan$$b16 000890124 7001_ $$00000-0003-2574-0745$$aLauret, Philippe$$b17 000890124 7001_ $$0P:(DE-HGF)0$$aLorenz, Elke$$b18 000890124 7001_ $$00000-0001-8197-5181$$avan der Meer, Dennis$$b19 000890124 7001_ $$0P:(DE-HGF)0$$aPaulescu, Marius$$b20 000890124 7001_ $$0P:(DE-HGF)0$$aPerez, Richard$$b21 000890124 7001_ $$0P:(DE-HGF)0$$aPerpiñán-Lamigueiro, Oscar$$b22 000890124 7001_ $$0P:(DE-Juel1)179536$$aPeters, Ian Marius$$b23 000890124 7001_ $$00000-0003-1132-7589$$aReikard, Gordon$$b24 000890124 7001_ $$0P:(DE-HGF)0$$aRenné, David$$b25 000890124 7001_ $$0P:(DE-HGF)0$$aSaint-Drenan, Yves-Marie$$b26 000890124 7001_ $$00000-0003-0242-7377$$aShuai, Yong$$b27 000890124 7001_ $$00000-0003-2977-5697$$aUrraca, Ruben$$b28 000890124 7001_ $$00000-0002-9465-3453$$aVerbois, Hadrien$$b29 000890124 7001_ $$0P:(DE-HGF)0$$aVignola, Frank$$b30 000890124 7001_ $$0P:(DE-HGF)0$$aVoyant, Cyril$$b31 000890124 7001_ $$0P:(DE-HGF)0$$aZhang, Jie$$b32 000890124 773__ $$0PERI:(DE-600)2015126-3$$a10.1016/j.solener.2020.04.019$$gVol. 210, p. 20 - 37$$p20 - 37$$tSolar energy$$v210$$x0038-092X$$y2020 000890124 8564_ $$uhttps://juser.fz-juelich.de/record/890124/files/1906%20manuscript.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000890124 909CO $$ooai:juser.fz-juelich.de:890124$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000890124 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179536$$aForschungszentrum Jülich$$b23$$kFZJ 000890124 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000890124 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1214$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 000890124 9141_ $$y2021 000890124 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOL ENERGY : 2018$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000890124 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29 000890124 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29 000890124 920__ $$lyes 000890124 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 000890124 9801_ $$aFullTexts 000890124 980__ $$ajournal 000890124 980__ $$aVDB 000890124 980__ $$aUNRESTRICTED 000890124 980__ $$aI:(DE-Juel1)IEK-11-20140314 000890124 981__ $$aI:(DE-Juel1)IET-2-20140314