001     890124
005     20240712113016.0
024 7 _ |a 10.1016/j.solener.2020.04.019
|2 doi
024 7 _ |a 0038-092X
|2 ISSN
024 7 _ |a 1471-1257
|2 ISSN
024 7 _ |a 2128/27320
|2 Handle
024 7 _ |a WOS:000579879500003
|2 WOS
037 _ _ |a FZJ-2021-00713
082 _ _ |a 530
100 1 _ |a Yang, Dazhi
|0 0000-0001-8427-0718
|b 0
|e Corresponding author
245 _ _ |a Verification of deterministic solar forecasts
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615277396_26834
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observa tions, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework.Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Alessandrini, Stefano
|0 0000-0002-7382-1294
|b 1
700 1 _ |a Antonanzas, Javier
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Antonanzas-Torres, Fernando
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Badescu, Viorel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Beyer, Hans Georg
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blaga, Robert
|0 0000-0001-9379-9701
|b 6
700 1 _ |a Boland, John
|0 0000-0003-0362-4655
|b 7
700 1 _ |a Bright, Jamie M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Coimbra, Carlos F. M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a David, Mathieu
|0 0000-0002-4134-7196
|b 10
700 1 _ |a Frimane, Âzeddine
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gueymard, Christian A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Hong, Tao
|0 P:(DE-Juel1)166229
|b 13
700 1 _ |a Kay, Merlinde J.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Killinger, Sven
|0 0000-0003-2959-6146
|b 15
700 1 _ |a Kleissl, Jan
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lauret, Philippe
|0 0000-0003-2574-0745
|b 17
700 1 _ |a Lorenz, Elke
|0 P:(DE-HGF)0
|b 18
700 1 _ |a van der Meer, Dennis
|0 0000-0001-8197-5181
|b 19
700 1 _ |a Paulescu, Marius
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Perez, Richard
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Perpiñán-Lamigueiro, Oscar
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Peters, Ian Marius
|0 P:(DE-Juel1)179536
|b 23
700 1 _ |a Reikard, Gordon
|0 0000-0003-1132-7589
|b 24
700 1 _ |a Renné, David
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Saint-Drenan, Yves-Marie
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Shuai, Yong
|0 0000-0003-0242-7377
|b 27
700 1 _ |a Urraca, Ruben
|0 0000-0003-2977-5697
|b 28
700 1 _ |a Verbois, Hadrien
|0 0000-0002-9465-3453
|b 29
700 1 _ |a Vignola, Frank
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Voyant, Cyril
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Zhang, Jie
|0 P:(DE-HGF)0
|b 32
773 _ _ |a 10.1016/j.solener.2020.04.019
|g Vol. 210, p. 20 - 37
|0 PERI:(DE-600)2015126-3
|p 20 - 37
|t Solar energy
|v 210
|y 2020
|x 0038-092X
856 4 _ |u https://juser.fz-juelich.de/record/890124/files/1906%20manuscript.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:890124
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)179536
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1214
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL ENERGY : 2018
|d 2020-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21