000890125 001__ 890125
000890125 005__ 20240712113016.0
000890125 0247_ $$2doi$$a10.1021/acsanm.0c00910
000890125 0247_ $$2Handle$$a2128/27436
000890125 0247_ $$2altmetric$$aaltmetric:83937021
000890125 0247_ $$2WOS$$aWOS:000545689000079
000890125 037__ $$aFZJ-2021-00714
000890125 082__ $$a540
000890125 1001_ $$0P:(DE-HGF)0$$aSelyshchev, Oleksandr$$b0
000890125 245__ $$aRaman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu 2 ZnSnS 4 Photovoltaic Absorbers
000890125 260__ $$aWashington, DC$$bACS Publications$$c2020
000890125 3367_ $$2DRIVER$$aarticle
000890125 3367_ $$2DataCite$$aOutput Types/Journal article
000890125 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615976302_26978
000890125 3367_ $$2BibTeX$$aARTICLE
000890125 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890125 3367_ $$00$$2EndNote$$aJournal Article
000890125 520__ $$aThe aim of this study is to establish reliable spectroscopic fingerprints of compounds that may form as secondary phases in Cu2ZnSnS4 (CZTS) nanocrystals (NCs) synthesized by “green” colloidal chemistry directly in aqueous solutions or during post-processing of NC films for photovoltaic application. For this purpose, we investigated a series of binary and ternary compound NCs synthesized under the same conditions as the quaternary CZTS NCs. The capabilities of combined Raman and X-ray photoemission (XPS) spectroscopies are used to identify these compounds formed separately and define spectral fingerprints for distinguishing them as possible secondary phases in the spectra of CZTS NCs. Besides the conventional analysis of element ratios and chemical shifts of the core-level peaks in the XPS spectra, the careful analysis of Auger lines and modified Auger parameters are applied to distinguish otherwise similar spectral contributions of different compounds. In the case of CuxS NCs the binding energy separation between the Cu2p3/2 and S2p3/2 core-levels is used as the additional fingerprint. As a criterion of a certain crystal structure in Raman spectroscopy, we rely not only on frequency positions of particular phonon modes but also on selective probing of different compounds at different (resonant) excitation wavelengths. The reasons of controversial previous reports on Raman spectra of CuxS are revealed and characteristic Raman spectra of Sn-poor Cu-Sn-S and Sn-poor Zn-Sn-S are proposed. For Cu-Zn-S, a mixture of CuxS and ZnS is formed under the given mild conditions rather than ternary compounds or alloys.
000890125 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000890125 536__ $$0G:(DE-HGF)POF3-530$$a530 - Science and Technology of Nanosystems (POF3-500)$$cPOF3-500$$fPOF III$$x1
000890125 588__ $$aDataset connected to CrossRef
000890125 7001_ $$0P:(DE-HGF)0$$aHavryliuk, Yevhenii$$b1
000890125 7001_ $$0P:(DE-HGF)0$$aValakh, Mykhailo Ya.$$b2
000890125 7001_ $$0P:(DE-HGF)0$$aYukhymchuk, Volodymyr O.$$b3
000890125 7001_ $$0P:(DE-HGF)0$$aRaievska, Oleksandra$$b4
000890125 7001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr L.$$b5
000890125 7001_ $$00000-0002-7839-9862$$aDzhagan, Volodymyr$$b6
000890125 7001_ $$00000-0002-8455-4582$$aZahn, Dietrich R. T.$$b7$$eCorresponding author
000890125 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.0c00910$$gVol. 3, no. 6, p. 5706 - 5717$$n6$$p5706 - 5717$$tACS applied nano materials$$v3$$x2574-0970$$y2020
000890125 8564_ $$uhttps://juser.fz-juelich.de/record/890125/files/acsanm.0c00910.pdf$$yRestricted
000890125 8564_ $$uhttps://juser.fz-juelich.de/record/890125/files/paper_CZTS_second_phases_ACS_Appl_Nanomat_rev_OS_VD_.docx$$yPublished on 2020-05-29. Available in OpenAccess from 2021-05-29.
000890125 909CO $$ooai:juser.fz-juelich.de:890125$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b5$$kFZJ
000890125 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000890125 9130_ $$1G:(DE-HGF)POF3-530$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lScience and Technology of Nanosystems$$x1
000890125 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890125 9141_ $$y2021
000890125 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890125 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000890125 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000890125 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890125 9801_ $$aFullTexts
000890125 980__ $$ajournal
000890125 980__ $$aVDB
000890125 980__ $$aUNRESTRICTED
000890125 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890125 981__ $$aI:(DE-Juel1)IET-2-20140314