001     890125
005     20240712113016.0
024 7 _ |a 10.1021/acsanm.0c00910
|2 doi
024 7 _ |a 2128/27436
|2 Handle
024 7 _ |a altmetric:83937021
|2 altmetric
024 7 _ |a WOS:000545689000079
|2 WOS
037 _ _ |a FZJ-2021-00714
082 _ _ |a 540
100 1 _ |a Selyshchev, Oleksandr
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu 2 ZnSnS 4 Photovoltaic Absorbers
260 _ _ |a Washington, DC
|c 2020
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615976302_26978
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aim of this study is to establish reliable spectroscopic fingerprints of compounds that may form as secondary phases in Cu2ZnSnS4 (CZTS) nanocrystals (NCs) synthesized by “green” colloidal chemistry directly in aqueous solutions or during post-processing of NC films for photovoltaic application. For this purpose, we investigated a series of binary and ternary compound NCs synthesized under the same conditions as the quaternary CZTS NCs. The capabilities of combined Raman and X-ray photoemission (XPS) spectroscopies are used to identify these compounds formed separately and define spectral fingerprints for distinguishing them as possible secondary phases in the spectra of CZTS NCs. Besides the conventional analysis of element ratios and chemical shifts of the core-level peaks in the XPS spectra, the careful analysis of Auger lines and modified Auger parameters are applied to distinguish otherwise similar spectral contributions of different compounds. In the case of CuxS NCs the binding energy separation between the Cu2p3/2 and S2p3/2 core-levels is used as the additional fingerprint. As a criterion of a certain crystal structure in Raman spectroscopy, we rely not only on frequency positions of particular phonon modes but also on selective probing of different compounds at different (resonant) excitation wavelengths. The reasons of controversial previous reports on Raman spectra of CuxS are revealed and characteristic Raman spectra of Sn-poor Cu-Sn-S and Sn-poor Zn-Sn-S are proposed. For Cu-Zn-S, a mixture of CuxS and ZnS is formed under the given mild conditions rather than ternary compounds or alloys.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a 530 - Science and Technology of Nanosystems (POF3-500)
|0 G:(DE-HGF)POF3-530
|c POF3-500
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Havryliuk, Yevhenii
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Valakh, Mykhailo Ya.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yukhymchuk, Volodymyr O.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Raievska, Oleksandra
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stroyuk, Oleksandr L.
|0 P:(DE-Juel1)178670
|b 5
700 1 _ |a Dzhagan, Volodymyr
|0 0000-0002-7839-9862
|b 6
700 1 _ |a Zahn, Dietrich R. T.
|0 0000-0002-8455-4582
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsanm.0c00910
|g Vol. 3, no. 6, p. 5706 - 5717
|0 PERI:(DE-600)2916552-0
|n 6
|p 5706 - 5717
|t ACS applied nano materials
|v 3
|y 2020
|x 2574-0970
856 4 _ |u https://juser.fz-juelich.de/record/890125/files/acsanm.0c00910.pdf
|y Restricted
856 4 _ |y Published on 2020-05-29. Available in OpenAccess from 2021-05-29.
|u https://juser.fz-juelich.de/record/890125/files/paper_CZTS_second_phases_ACS_Appl_Nanomat_rev_OS_VD_.docx
909 C O |o oai:juser.fz-juelich.de:890125
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178670
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Science and Technology of Nanosystems
|1 G:(DE-HGF)POF3-530
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-04
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21