000890127 001__ 890127 000890127 005__ 20230217124238.0 000890127 0247_ $$2doi$$a10.1103/PhysRevD.102.014507 000890127 0247_ $$2ISSN$$a0556-2821 000890127 0247_ $$2ISSN$$a1089-4918 000890127 0247_ $$2ISSN$$a1538-4500 000890127 0247_ $$2ISSN$$a1550-2368 000890127 0247_ $$2ISSN$$a1550-7998 000890127 0247_ $$2ISSN$$a2470-0010 000890127 0247_ $$2ISSN$$a2470-0029 000890127 0247_ $$2Handle$$a2128/27000 000890127 0247_ $$2altmetric$$aaltmetric:62960556 000890127 0247_ $$2WOS$$aWOS:000548448400002 000890127 037__ $$aFZJ-2021-00716 000890127 082__ $$a530 000890127 1001_ $$0P:(DE-Juel1)177023$$aStokes, Finn$$b0$$eCorresponding author$$ufzj 000890127 245__ $$aElastic form factors of nucleon excitations in lattice QCD 000890127 260__ $$aMelville, NY$$bInst.812068$$c2020 000890127 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-07-15 000890127 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-07-01 000890127 3367_ $$2DRIVER$$aarticle 000890127 3367_ $$2DataCite$$aOutput Types/Journal article 000890127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611568362_31334 000890127 3367_ $$2BibTeX$$aARTICLE 000890127 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890127 3367_ $$00$$2EndNote$$aJournal Article 000890127 520__ $$aFirst principles calculations of the form factors of baryon excitations are now becoming accessible through advances in lattice-QCD techniques. In this paper, we explore the utility of the parity-expanded variational analysis (PEVA) technique in calculating the Sachs electromagnetic form factors for excitations of the proton and neutron. We study the two lowest-lying odd-parity excitations and demonstrate that at heavier quark masses, these states are dominated by behavior consistent with constituent quark models for the N∗(1535) and N∗(1650), respectively. We also study the lowest-lying localized even-parity excitation and find that its form factors are consistent with a radial excitation of the ground-state nucleon. A comparison of the results from the PEVA technique with those from a conventional variational analysis exposes the necessity of the PEVA approach in baryon excited-state studies. 000890127 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000890127 542__ $$2Crossref$$i2020-07-15$$uhttps://creativecommons.org/licenses/by/4.0/ 000890127 588__ $$aDataset connected to CrossRef 000890127 7001_ $$00000-0002-6177-5366$$aKamleh, Waseem$$b1 000890127 7001_ $$00000-0002-4745-6027$$aLeinweber, Derek B.$$b2 000890127 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.102.014507$$bAmerican Physical Society (APS)$$d2020-07-15$$n1$$p014507$$tPhysical Review D$$v102$$x2470-0010$$y2020 000890127 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.102.014507$$gVol. 102, no. 1, p. 014507$$n1$$p014507$$tPhysical review / D$$v102$$x2470-0010$$y2020 000890127 8564_ $$uhttps://juser.fz-juelich.de/record/890127/files/PhysRevD.102.014507.pdf$$yOpenAccess 000890127 909CO $$ooai:juser.fz-juelich.de:890127$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000890127 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177023$$aForschungszentrum Jülich$$b0$$kFZJ 000890127 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000890127 9141_ $$y2020 000890127 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000890127 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000890127 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000890127 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016 000890127 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000890127 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000890127 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000890127 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000890127 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000890127 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000890127 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000890127 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000890127 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000890127 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3 000890127 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000890127 9801_ $$aFullTexts 000890127 980__ $$ajournal 000890127 980__ $$aVDB 000890127 980__ $$aUNRESTRICTED 000890127 980__ $$aI:(DE-Juel1)JSC-20090406 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0375-9474(03)01160-6 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.094506 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.011501 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.054506 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.84.074508 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.71.094004 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epja/i2013-13011-2 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.132002 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.074506 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.082004 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(91)90366-6 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.094510 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.114501 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2011.12.048 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.014506 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.094509 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.074507 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.034034 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.014510 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.85.054016 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.094502 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.014506 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.97.094509 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.97.014506 000890127 999C5 $$1C. W. Andersen$$2Crossref$$oC. W. Andersen 2019$$y2019 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.034501 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.074509 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.242001 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.114508 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.074502 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.013008 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.100.034511 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2013.06.056 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.074501 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSCP.10.010011 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.094504 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.034513 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.114501 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.85.014507 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.014513 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.114506 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(91)90538-9 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.74.093005 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.43.1659 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.79.034503 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2011.01.027 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0920-5632(90)90273-W 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.69.054501 000890127 999C5 $$1C. W. Bernard$$2Crossref$$oC. W. Bernard Lattice Gauge Theory: A Challenge in Large-Scale Computing 1985$$tLattice Gauge Theory: A Challenge in Large-Scale Computing$$y1985 000890127 999C5 $$1Z.-W. Liu$$2Crossref$$oZ.-W. Liu 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X17300113 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.aop.2014.01.004 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2013.06.048 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.88.014504 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.45.252 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1137/40/10/100001 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.054510 000890127 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.054502