000890128 001__ 890128
000890128 005__ 20240709082110.0
000890128 0247_ $$2doi$$a10.1063/1.5119991
000890128 0247_ $$2ISSN$$a0021-9606
000890128 0247_ $$2ISSN$$a1089-7690
000890128 0247_ $$2ISSN$$a1520-9032
000890128 0247_ $$2Handle$$a2128/27351
000890128 0247_ $$2altmetric$$aaltmetric:68844815
000890128 0247_ $$2pmid$$a31615238
000890128 0247_ $$2WOS$$aWOS:000500356200037
000890128 037__ $$aFZJ-2021-00717
000890128 082__ $$a530
000890128 1001_ $$0P:(DE-Juel1)178670$$aStroyuk, Oleksandr$$b0$$eCorresponding author
000890128 245__ $$aMercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides
000890128 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2019
000890128 3367_ $$2DRIVER$$aarticle
000890128 3367_ $$2DataCite$$aOutput Types/Journal article
000890128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615463754_2560
000890128 3367_ $$2BibTeX$$aARTICLE
000890128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890128 3367_ $$00$$2EndNote$$aJournal Article
000890128 520__ $$aA general synthesis approach of aqueous glutathione-capped ternary Ag-In-S, Cu-In-S, and Hg-In-Snanocrystals (NCs) is introduced allowing the NC composition to be varied in a broad range. TernaryHg-In-S (HIS) NCs are reported for the first time and found to have the same tetragonal chalcopyritemotif as Cu-In-S and Ag-In-S NCs, corroborated by phonon spectra, while X-ray photoelectronspectroscopic data indicate mercury to be present as Hg+ in the Hg-In-S NCs. Colloidal HIS and Hg-InS/ZnS NCs showed little or no variations of the spectral width of the photoluminescence band uponNC size selection, temperature variation in a broad range of 10-350 K, deposition of a ZnS shell, or apost-synthesis annealing. All these observations are similar to those reported earlier for Ag-In-S andAg-In-S/ZnS NCs and allowed us to assume a general photoluminescence mechanism for all threeternary compounds, based on the model of radiative self-trapped exciton recombination.
000890128 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000890128 536__ $$0G:(DE-HGF)POF3-530$$a530 - Science and Technology of Nanosystems (POF3-500)$$cPOF3-500$$fPOF III$$x1
000890128 588__ $$aDataset connected to CrossRef
000890128 7001_ $$00000-0002-9225-1258$$aRaevskaya, Alexandra$$b1
000890128 7001_ $$0P:(DE-HGF)0$$aSpranger, Felix$$b2
000890128 7001_ $$0P:(DE-HGF)0$$aSelyshchev, Oleksandr$$b3
000890128 7001_ $$00000-0002-7839-9862$$aDzhagan, Volodymyr$$b4
000890128 7001_ $$00000-0002-1699-9344$$aSolonenko, Dmytro$$b5
000890128 7001_ $$00000-0002-8827-2881$$aGaponik, Nikolai$$b6
000890128 7001_ $$00000-0002-8455-4582$$aZahn, Dietrich R. T.$$b7
000890128 7001_ $$00000-0001-9926-6279$$aEychmüller, Alexander$$b8
000890128 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5119991$$gVol. 151, no. 14, p. 144701 -$$n14$$p144701$$tThe journal of chemical physics$$v151$$x1089-7690$$y2019
000890128 8564_ $$uhttps://juser.fz-juelich.de/record/890128/files/1.5119991.pdf$$yPublished on 2019-10-08. Available in OpenAccess from 2020-10-08.
000890128 909CO $$ooai:juser.fz-juelich.de:890128$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178670$$aForschungszentrum Jülich$$b0$$kFZJ
000890128 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000890128 9130_ $$1G:(DE-HGF)POF3-530$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lScience and Technology of Nanosystems$$x1
000890128 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1212$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890128 9141_ $$y2021
000890128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger
000890128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05
000890128 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000890128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000890128 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890128 9801_ $$aFullTexts
000890128 980__ $$ajournal
000890128 980__ $$aVDB
000890128 980__ $$aUNRESTRICTED
000890128 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890128 981__ $$aI:(DE-Juel1)IET-2-20140314