001     890128
005     20240709082110.0
024 7 _ |a 10.1063/1.5119991
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 2128/27351
|2 Handle
024 7 _ |a altmetric:68844815
|2 altmetric
024 7 _ |a 31615238
|2 pmid
024 7 _ |a WOS:000500356200037
|2 WOS
037 _ _ |a FZJ-2021-00717
082 _ _ |a 530
100 1 _ |a Stroyuk, Oleksandr
|0 P:(DE-Juel1)178670
|b 0
|e Corresponding author
245 _ _ |a Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides
260 _ _ |a Melville, NY
|c 2019
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615463754_2560
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A general synthesis approach of aqueous glutathione-capped ternary Ag-In-S, Cu-In-S, and Hg-In-Snanocrystals (NCs) is introduced allowing the NC composition to be varied in a broad range. TernaryHg-In-S (HIS) NCs are reported for the first time and found to have the same tetragonal chalcopyritemotif as Cu-In-S and Ag-In-S NCs, corroborated by phonon spectra, while X-ray photoelectronspectroscopic data indicate mercury to be present as Hg+ in the Hg-In-S NCs. Colloidal HIS and Hg-InS/ZnS NCs showed little or no variations of the spectral width of the photoluminescence band uponNC size selection, temperature variation in a broad range of 10-350 K, deposition of a ZnS shell, or apost-synthesis annealing. All these observations are similar to those reported earlier for Ag-In-S andAg-In-S/ZnS NCs and allowed us to assume a general photoluminescence mechanism for all threeternary compounds, based on the model of radiative self-trapped exciton recombination.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a 530 - Science and Technology of Nanosystems (POF3-500)
|0 G:(DE-HGF)POF3-530
|c POF3-500
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Raevskaya, Alexandra
|0 0000-0002-9225-1258
|b 1
700 1 _ |a Spranger, Felix
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Selyshchev, Oleksandr
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dzhagan, Volodymyr
|0 0000-0002-7839-9862
|b 4
700 1 _ |a Solonenko, Dmytro
|0 0000-0002-1699-9344
|b 5
700 1 _ |a Gaponik, Nikolai
|0 0000-0002-8827-2881
|b 6
700 1 _ |a Zahn, Dietrich R. T.
|0 0000-0002-8455-4582
|b 7
700 1 _ |a Eychmüller, Alexander
|0 0000-0001-9926-6279
|b 8
773 _ _ |a 10.1063/1.5119991
|g Vol. 151, no. 14, p. 144701 -
|0 PERI:(DE-600)1473050-9
|n 14
|p 144701
|t The journal of chemical physics
|v 151
|y 2019
|x 1089-7690
856 4 _ |u https://juser.fz-juelich.de/record/890128/files/1.5119991.pdf
|y Published on 2019-10-08. Available in OpenAccess from 2020-10-08.
909 C O |o oai:juser.fz-juelich.de:890128
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178670
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Science and Technology of Nanosystems
|1 G:(DE-HGF)POF3-530
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2018
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21