001     890133
005     20240712113017.0
024 7 _ |a 10.1002/adma.201908305
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/27412
|2 Handle
024 7 _ |a 32108389
|2 pmid
024 7 _ |a WOS:000516873200001
|2 WOS
037 _ _ |a FZJ-2021-00722
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Du, Xiaoyan
|0 P:(DE-Juel1)180633
|b 0
245 _ _ |a Unraveling the Microstructure‐Related Device Stability for Polymer Solar Cells Based on Nonfullerene Small‐Molecular Acceptors
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615814557_31766
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 17% baseline, the long‐term stability of highly efficient OSCs is essential for the practical application of this photovoltaic technology. Here, the photostability and possible degradation mechanisms of three state‐of‐the‐art polymer donors with a commonly used nonfullerene acceptor (NFA), IT‐4F, are investigated. The active‐layer materials show excellent intrinsic photostability. The initial morphology, in particular the mixed region, causes degradation predominantly in the fill factor (FF) under illumination. Electron traps are formed due to the reorganization of polymers and diffusion‐limited aggregation of NFAs to assemble small isolated acceptor domains under illumination. These electron traps lead to losses mainly in FF, which is in contradistinction to the degradation mechanisms observed for fullerene‐based OSCs. Control of the composition of NFAs close to the thermodynamic equilibrium limit while keeping adequate electron percolation and improving the initial polymer and NFA ordering are of the essence to stabilize the FF in NFA‐based solar cells, which may be the key tactics to develop next‐generation OSCs with high efficiency as well as excellent stability.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a 540 - Advanced Engineering Materials (POF3-500)
|0 G:(DE-HGF)POF3-540
|c POF3-500
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Heumueller, Thomas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gruber, Wolfgang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Almora, Osbel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Classen, Andrej
|0 P:(DE-Juel1)180634
|b 4
700 1 _ |a Qu, Jianfei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a He, Feng
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Unruh, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)180778
|b 8
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 9
|e Corresponding author
773 _ _ |a 10.1002/adma.201908305
|g Vol. 32, no. 16, p. 1908305 -
|0 PERI:(DE-600)1474949-x
|n 16
|p 1908305
|t Advanced materials
|v 32
|y 2020
|x 1521-4095
856 4 _ |u https://juser.fz-juelich.de/record/890133/files/Unravelling%20the%20Microstructure-Related%20Device%20Stability%20for%20Polymer%20Solar%20Cells%20Based%20on%20Nonfullerene%20Small-Molecular%20Acceptors.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890133
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176427
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Advanced Engineering Materials
|1 G:(DE-HGF)POF3-540
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-10-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21