000890138 001__ 890138
000890138 005__ 20250129094317.0
000890138 020__ $$a978-3-95806-557-4
000890138 0247_ $$2Handle$$a2128/27805
000890138 037__ $$aFZJ-2021-00727
000890138 041__ $$aEnglish
000890138 1001_ $$0P:(DE-Juel1)171247$$aMaraytta, Nour$$b0$$eCorresponding author
000890138 245__ $$aStructure and Dynamics of Magnetocaloric Materials$$f2017-09-01 - 2021-01-22
000890138 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2021
000890138 300__ $$avii, 146
000890138 3367_ $$2DataCite$$aOutput Types/Dissertation
000890138 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000890138 3367_ $$2ORCID$$aDISSERTATION
000890138 3367_ $$2BibTeX$$aPHDTHESIS
000890138 3367_ $$02$$2EndNote$$aThesis
000890138 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1633334597_3941
000890138 3367_ $$2DRIVER$$adoctoralThesis
000890138 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies$$v240
000890138 502__ $$aDissertation, RWTH Aachen University, 2021$$bDissertation$$cRWTH Aachen University$$d2021
000890138 520__ $$aThe search for more efficient use of energy has been leading to a growing interest in the research field of magnetocaloric materials. The magnetocaloric effect (MCE) describes the change of temperature or entropy of a material when exposed to a change of the magnetic field and forms the basis of magnetocaloric refrigeration technologies. This utilization of the effect can offer a novel method for cooling that is economically feasible and ecologically friendly, and hence the effect attracts the attention of many researches. MCE is identified by the temperature change ($\Delta$T$_{ad}$) in an adiabatic process, and by the entropy change ($\Delta$S$_{iso}$) in an isothermal process.Part of this thesis is devoted to the investigation of the magnetocaloric effect (MCE) by direct measurements in pulsed magnetic fields as well as by analyzing the magnetization and specific heat data collected in static magnetic fields. The emphasis is on the direct measurement of the adiabatic temperature change $\Delta$T$_{ad}$ in pulsed magnetic fields as it provides the opportunity to examine the sample-temperature response to the magnetic field on a time scale of about 10 to 100 ms, which is on the order of typical operation frequencies (10 - 100 Hz) of magnetocaloric cooling devices. Furthermore, the accessible magnetic field range is extended to beyond 70 T and the short pulse duration provides nearly adiabatic conditions during the measurement. In the last years there has been an upsurge in the knowledge of the MCE and many materials have been investigated for their MCE characteristics. In the context of this thesis, the magnetocaloric properties of the single crystalline compounds MnFe$_{4}$Si$_{3}$ and Mn$_{5}$Ge$_{3}$ are investigated. Moreover, the nuclear and magnetic structure of the AF1' phase of the single crystalline compound Mn$_{5}$Si$_{3}$ are determined. For the MnFe$_{4}$Si$_{3}$, we have studied the magnetic and magnetocaloric response to pulsed and static magnetic fields up to 50 T. We determine the adiabatic temperature change $\Delta$T$_{ad}$ directly in pulsed fields and compare to the results of magnetization and specific heat measurements in static magnetic fields. The high ability of cycling even in high fields confirms the high structural stability of MnFe$_{4}$Si$_{3}$ against field changes, an important property for applications. The magnetic response to magnetic fields up to $\mu_{0}$H = 35 T shows that the anisotropy can be overcome by fields of approx. 7 T. For the Mn$_{5}$Ge$_{3}$, we have investigated the field direction dependence of the thermo-magnetic behavior in single crystalline Mn$_{5}$Ge$_{3}$. The adiabatic temperature change $\Delta$T$_{ad}$ in pulsed fields, the isothermal entropy change $\Delta$S$_{iso}$ calculated from static magnetization measurements and the heat capacity have been determined for field parallel and perpendicular to the easy magnetic direction [001]. The isothermal magnetization measurements yield furthermore the uniaxial anisotropy constants in second and fourth order, K$_{1}$ and K$_{2}$. We discuss how the anisotropy affects the magneto-caloric effect (MCE) and compare the results to the related [...]
000890138 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000890138 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000890138 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x1
000890138 8564_ $$uhttps://juser.fz-juelich.de/record/890138/files/Maraytta.pdf$$yOpenAccess
000890138 8564_ $$uhttps://juser.fz-juelich.de/record/890138/files/Schluesseltech_240.pdf$$yOpenAccess
000890138 909CO $$ooai:juser.fz-juelich.de:890138$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890138 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171247$$aForschungszentrum Jülich$$b0$$kFZJ
000890138 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890138 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000890138 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000890138 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000890138 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000890138 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000890138 9141_ $$y2021
000890138 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890138 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890138 920__ $$lyes
000890138 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000890138 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000890138 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000890138 9801_ $$aFullTexts
000890138 980__ $$aphd
000890138 980__ $$aVDB
000890138 980__ $$abook
000890138 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000890138 980__ $$aI:(DE-Juel1)PGI-4-20110106
000890138 980__ $$aI:(DE-82)080009_20140620
000890138 980__ $$aUNRESTRICTED
000890138 981__ $$aI:(DE-Juel1)JCNS-2-20110106