001     890138
005     20250129094317.0
020 _ _ |a 978-3-95806-557-4
024 7 _ |a 2128/27805
|2 Handle
037 _ _ |a FZJ-2021-00727
041 _ _ |a English
100 1 _ |a Maraytta, Nour
|0 P:(DE-Juel1)171247
|b 0
|e Corresponding author
245 _ _ |a Structure and Dynamics of Magnetocaloric Materials
|f 2017-09-01 - 2021-01-22
260 _ _ |a Jülich
|c 2021
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a vii, 146
336 7 _ |a Output Types/Dissertation
|2 DataCite
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a DISSERTATION
|2 ORCID
336 7 _ |a PHDTHESIS
|2 BibTeX
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a Dissertation / PhD Thesis
|b phd
|m phd
|0 PUB:(DE-HGF)11
|s 1633334597_3941
|2 PUB:(DE-HGF)
336 7 _ |a doctoralThesis
|2 DRIVER
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies
|v 240
502 _ _ |a Dissertation, RWTH Aachen University, 2021
|c RWTH Aachen University
|b Dissertation
|d 2021
520 _ _ |a The search for more efficient use of energy has been leading to a growing interest in the research field of magnetocaloric materials. The magnetocaloric effect (MCE) describes the change of temperature or entropy of a material when exposed to a change of the magnetic field and forms the basis of magnetocaloric refrigeration technologies. This utilization of the effect can offer a novel method for cooling that is economically feasible and ecologically friendly, and hence the effect attracts the attention of many researches. MCE is identified by the temperature change ($\Delta$T$_{ad}$) in an adiabatic process, and by the entropy change ($\Delta$S$_{iso}$) in an isothermal process.Part of this thesis is devoted to the investigation of the magnetocaloric effect (MCE) by direct measurements in pulsed magnetic fields as well as by analyzing the magnetization and specific heat data collected in static magnetic fields. The emphasis is on the direct measurement of the adiabatic temperature change $\Delta$T$_{ad}$ in pulsed magnetic fields as it provides the opportunity to examine the sample-temperature response to the magnetic field on a time scale of about 10 to 100 ms, which is on the order of typical operation frequencies (10 - 100 Hz) of magnetocaloric cooling devices. Furthermore, the accessible magnetic field range is extended to beyond 70 T and the short pulse duration provides nearly adiabatic conditions during the measurement. In the last years there has been an upsurge in the knowledge of the MCE and many materials have been investigated for their MCE characteristics. In the context of this thesis, the magnetocaloric properties of the single crystalline compounds MnFe$_{4}$Si$_{3}$ and Mn$_{5}$Ge$_{3}$ are investigated. Moreover, the nuclear and magnetic structure of the AF1' phase of the single crystalline compound Mn$_{5}$Si$_{3}$ are determined. For the MnFe$_{4}$Si$_{3}$, we have studied the magnetic and magnetocaloric response to pulsed and static magnetic fields up to 50 T. We determine the adiabatic temperature change $\Delta$T$_{ad}$ directly in pulsed fields and compare to the results of magnetization and specific heat measurements in static magnetic fields. The high ability of cycling even in high fields confirms the high structural stability of MnFe$_{4}$Si$_{3}$ against field changes, an important property for applications. The magnetic response to magnetic fields up to $\mu_{0}$H = 35 T shows that the anisotropy can be overcome by fields of approx. 7 T. For the Mn$_{5}$Ge$_{3}$, we have investigated the field direction dependence of the thermo-magnetic behavior in single crystalline Mn$_{5}$Ge$_{3}$. The adiabatic temperature change $\Delta$T$_{ad}$ in pulsed fields, the isothermal entropy change $\Delta$S$_{iso}$ calculated from static magnetization measurements and the heat capacity have been determined for field parallel and perpendicular to the easy magnetic direction [001]. The isothermal magnetization measurements yield furthermore the uniaxial anisotropy constants in second and fourth order, K$_{1}$ and K$_{2}$. We discuss how the anisotropy affects the magneto-caloric effect (MCE) and compare the results to the related [...]
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e HEiDi: Single crystal diffractometer on hot source
|f SR9b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)HEIDI-20140101
|5 EXP:(DE-MLZ)HEIDI-20140101
|6 EXP:(DE-MLZ)SR9b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e POLI: Polarized hot neutron diffractometer
|f SR9a
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)POLI-HEIDI-20140101
|5 EXP:(DE-MLZ)POLI-HEIDI-20140101
|6 EXP:(DE-MLZ)SR9a-20140101
|x 1
856 4 _ |u https://juser.fz-juelich.de/record/890138/files/Maraytta.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/890138/files/Schluesseltech_240.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890138
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171247
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 1
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 3
913 0 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 4
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21