000890144 001__ 890144
000890144 005__ 20240712113017.0
000890144 0247_ $$2doi$$a10.1002/adfm.202001764
000890144 0247_ $$2ISSN$$a1057-9257
000890144 0247_ $$2ISSN$$a1099-0712
000890144 0247_ $$2ISSN$$a1616-301X
000890144 0247_ $$2ISSN$$a1616-3028
000890144 0247_ $$2Handle$$a2128/27232
000890144 0247_ $$2altmetric$$aaltmetric:92305186
000890144 0247_ $$2WOS$$aWOS:000536917500001
000890144 037__ $$aFZJ-2021-00733
000890144 082__ $$a530
000890144 1001_ $$0P:(DE-HGF)0$$aTian, Jingjing$$b0
000890144 245__ $$aComposition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells
000890144 260__ $$aWeinheim$$bWiley-VCH$$c2020
000890144 3367_ $$2DRIVER$$aarticle
000890144 3367_ $$2DataCite$$aOutput Types/Journal article
000890144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614188350_21715
000890144 3367_ $$2BibTeX$$aARTICLE
000890144 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890144 3367_ $$00$$2EndNote$$aJournal Article
000890144 520__ $$aCesium-based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all-inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long-term stability for all-inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high-quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open-circuit voltage of 1.25 V. More importantly, a remarkable long-term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
000890144 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000890144 536__ $$0G:(DE-HGF)POF3-540$$a540 - Advanced Engineering Materials (POF3-500)$$cPOF3-500$$fPOF III$$x1
000890144 588__ $$aDataset connected to CrossRef
000890144 7001_ $$0P:(DE-HGF)0$$aWang, Jing$$b1
000890144 7001_ $$0P:(DE-HGF)0$$aXue, Qifan$$b2
000890144 7001_ $$0P:(DE-HGF)0$$aNiu, Tianqi$$b3
000890144 7001_ $$0P:(DE-HGF)0$$aYan, Lei$$b4
000890144 7001_ $$0P:(DE-HGF)0$$aZhu, Zonglong$$b5
000890144 7001_ $$0P:(DE-Juel1)180778$$aLi, Ning$$b6$$eCorresponding author$$ufzj
000890144 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b7
000890144 7001_ $$00000-0002-5750-9751$$aYip, Hin-Lap$$b8
000890144 7001_ $$0P:(DE-HGF)0$$aCao, Yong$$b9
000890144 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202001764$$gVol. 30, no. 28, p. 2001764 -$$n28$$p2001764 -$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000890144 8564_ $$uhttps://juser.fz-juelich.de/record/890144/files/Composition-Dependent%20Optical%20Band%20Bowing%2C%20Vibrational%20and%20Photochemical%20Behaviour%20of%20Aqueous%20Glutathione%20-Capped%20%28CU%2CAg%29-In-S%20Quantum%20Dots.pdf$$yOpenAccess
000890144 909CO $$ooai:juser.fz-juelich.de:890144$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180778$$aForschungszentrum Jülich$$b6$$kFZJ
000890144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b7$$kFZJ
000890144 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890144 9130_ $$1G:(DE-HGF)POF3-540$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lAdvanced Engineering Materials$$x1
000890144 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890144 9141_ $$y2021
000890144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-28
000890144 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890144 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-28$$wger
000890144 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890144 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000890144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000890144 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890144 9801_ $$aFullTexts
000890144 980__ $$ajournal
000890144 980__ $$aVDB
000890144 980__ $$aUNRESTRICTED
000890144 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890144 981__ $$aI:(DE-Juel1)IET-2-20140314