000890165 001__ 890165
000890165 005__ 20240712113249.0
000890165 0247_ $$2doi$$a10.1039/D0CY00772B
000890165 0247_ $$2ISSN$$a2044-4753
000890165 0247_ $$2ISSN$$a2044-4761
000890165 0247_ $$2Handle$$a2128/27008
000890165 0247_ $$2altmetric$$aaltmetric:89321154
000890165 0247_ $$2WOS$$aWOS:000560593800010
000890165 037__ $$aFZJ-2021-00754
000890165 082__ $$a540
000890165 1001_ $$00000-0001-5961-0661$$aPolani, Shlomi$$b0$$eCorresponding author
000890165 245__ $$aSize dependent oxygen reduction and methanol oxidation reactions: catalytic activities of PtCu octahedral nanocrystals
000890165 260__ $$aLondon$$bRSC Publ.$$c2020
000890165 3367_ $$2DRIVER$$aarticle
000890165 3367_ $$2DataCite$$aOutput Types/Journal article
000890165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611575420_25505
000890165 3367_ $$2BibTeX$$aARTICLE
000890165 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890165 3367_ $$00$$2EndNote$$aJournal Article
000890165 520__ $$aThe synthetic control through colloidal synthesis led to a remarkable increase in platinum mass activity in octahedral nanocrystals with a Pt-rich surface. In this manuscript, we demonstrate that the ratio of surfactant can tune the size of Pt surface enriched PtCu nano-octahedra from 8 to 18 nm with homogeneous size and shape on the carbon support. For the nano-octahedra, the Pt-rich surface has been determined by high-angle annular dark field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. The Pt-rich surface exhibits an increasing compressive strain with increasing surface of the {111} facets. With increasing surface, the PtCu nano-octahedra display higher oxygen reduction reaction (ORR) activity, which however leads to higher onset over-potentials in the methanol oxidation reaction (MOR) and CO-stripping. This observed trend for a series of size-selected nano-octahedra demonstrates the benefits of controlling the strained {111} Pt surface for the ORR and MOR activity.
000890165 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000890165 588__ $$aDataset connected to CrossRef
000890165 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b1
000890165 7001_ $$0P:(DE-HGF)0$$aShokhen, Victor$$b2
000890165 7001_ $$0P:(DE-HGF)0$$aZysler, Melina$$b3
000890165 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b4
000890165 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5
000890165 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b6
000890165 7001_ $$00000-0003-3383-6165$$aZitoun, David$$b7
000890165 773__ $$0PERI:(DE-600)2595090-3$$a10.1039/D0CY00772B$$gVol. 10, no. 16, p. 5501 - 5512$$n16$$p5501 - 5512$$tCatalysis science & technology$$v10$$x2044-4761$$y2020
000890165 8564_ $$uhttps://juser.fz-juelich.de/record/890165/files/d0cy00772b.pdf$$yRestricted
000890165 8564_ $$uhttps://juser.fz-juelich.de/record/890165/files/Polani_Shlomi_180912_Pt_Cu_manuscript.pdf$$yPublished on 2020-07-13. Available in OpenAccess from 2021-07-13.
000890165 8564_ $$uhttps://juser.fz-juelich.de/record/890165/files/Polani_Shlomi_180912_Pt_Cu_manuscript_SI.pdf$$yPublished on 2020-07-13. Available in OpenAccess from 2021-07-13.
000890165 909CO $$ooai:juser.fz-juelich.de:890165$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b1$$kFZJ
000890165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b4$$kFZJ
000890165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000890165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b6$$kFZJ
000890165 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000890165 9141_ $$y2020
000890165 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890165 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATAL SCI TECHNOL : 2018$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCATAL SCI TECHNOL : 2018$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-02$$wger
000890165 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000890165 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000890165 920__ $$lyes
000890165 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000890165 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000890165 9801_ $$aFullTexts
000890165 980__ $$ajournal
000890165 980__ $$aVDB
000890165 980__ $$aUNRESTRICTED
000890165 980__ $$aI:(DE-Juel1)IEK-14-20191129
000890165 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000890165 981__ $$aI:(DE-Juel1)IET-4-20191129