001     890165
005     20240712113249.0
024 7 _ |a 10.1039/D0CY00772B
|2 doi
024 7 _ |a 2044-4753
|2 ISSN
024 7 _ |a 2044-4761
|2 ISSN
024 7 _ |a 2128/27008
|2 Handle
024 7 _ |a altmetric:89321154
|2 altmetric
024 7 _ |a WOS:000560593800010
|2 WOS
037 _ _ |a FZJ-2021-00754
082 _ _ |a 540
100 1 _ |a Polani, Shlomi
|0 0000-0001-5961-0661
|b 0
|e Corresponding author
245 _ _ |a Size dependent oxygen reduction and methanol oxidation reactions: catalytic activities of PtCu octahedral nanocrystals
260 _ _ |a London
|c 2020
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611575420_25505
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The synthetic control through colloidal synthesis led to a remarkable increase in platinum mass activity in octahedral nanocrystals with a Pt-rich surface. In this manuscript, we demonstrate that the ratio of surfactant can tune the size of Pt surface enriched PtCu nano-octahedra from 8 to 18 nm with homogeneous size and shape on the carbon support. For the nano-octahedra, the Pt-rich surface has been determined by high-angle annular dark field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. The Pt-rich surface exhibits an increasing compressive strain with increasing surface of the {111} facets. With increasing surface, the PtCu nano-octahedra display higher oxygen reduction reaction (ORR) activity, which however leads to higher onset over-potentials in the methanol oxidation reaction (MOR) and CO-stripping. This observed trend for a series of size-selected nano-octahedra demonstrates the benefits of controlling the strained {111} Pt surface for the ORR and MOR activity.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shviro, Meital
|0 P:(DE-Juel1)165174
|b 1
700 1 _ |a Shokhen, Victor
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zysler, Melina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Glüsen, Andreas
|0 P:(DE-Juel1)129851
|b 4
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 5
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 6
700 1 _ |a Zitoun, David
|0 0000-0003-3383-6165
|b 7
773 _ _ |a 10.1039/D0CY00772B
|g Vol. 10, no. 16, p. 5501 - 5512
|0 PERI:(DE-600)2595090-3
|n 16
|p 5501 - 5512
|t Catalysis science & technology
|v 10
|y 2020
|x 2044-4761
856 4 _ |u https://juser.fz-juelich.de/record/890165/files/d0cy00772b.pdf
|y Restricted
856 4 _ |y Published on 2020-07-13. Available in OpenAccess from 2021-07-13.
|u https://juser.fz-juelich.de/record/890165/files/Polani_Shlomi_180912_Pt_Cu_manuscript.pdf
856 4 _ |y Published on 2020-07-13. Available in OpenAccess from 2021-07-13.
|u https://juser.fz-juelich.de/record/890165/files/Polani_Shlomi_180912_Pt_Cu_manuscript_SI.pdf
909 C O |o oai:juser.fz-juelich.de:890165
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145276
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CATAL SCI TECHNOL : 2018
|d 2020-09-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CATAL SCI TECHNOL : 2018
|d 2020-09-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-02
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21