000890166 001__ 890166
000890166 005__ 20240712113018.0
000890166 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.095401
000890166 0247_ $$2ISSN$$a2475-9953
000890166 0247_ $$2ISSN$$a2476-0455
000890166 0247_ $$2Handle$$a2128/27421
000890166 0247_ $$2WOS$$aWOS:000571166200001
000890166 037__ $$aFZJ-2021-00755
000890166 082__ $$a530
000890166 1001_ $$0P:(DE-HGF)0$$aXu, Zhengwei$$b0$$eCorresponding author
000890166 245__ $$aPhase diagram and stability of mixed-cation lead iodide perovskites: A theory and experiment combined study
000890166 260__ $$aCollege Park, MD$$bAPS$$c2020
000890166 3367_ $$2DRIVER$$aarticle
000890166 3367_ $$2DataCite$$aOutput Types/Journal article
000890166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615890429_15226
000890166 3367_ $$2BibTeX$$aARTICLE
000890166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890166 3367_ $$00$$2EndNote$$aJournal Article
000890166 520__ $$aAlloying structurally similar perovskites to form mixed-cation lead iodide perovskites, e.g., CsxFA(1−x)PbI3, MAxFA(1−x)PbI3, and CsxMAyFA(1−x−y)PbI3, could improve the performance of perovskite-based solar cells and light-emitting diodes. However, a phase diagram of them and a clear understanding of the underlying atomic-scale mechanism are still lacking. Using ab initio calculations combined with high-throughput experimentation, we demonstrate the phase diagram of mixed-cation lead iodide perovskites. Only a small proportion of monovalent cations (Cs+/Rb+/MA+) could be incorporated into the FAPbI3/MAPbI3 matrix; otherwise it will be separated into δ-CsPbI3, δ-RbPbI3, MAI, etc. The smaller the radius of doping cations, the harder it is to incorporate them into a perovskite lattice and the easier it is to stabilize the perovskite phase. In FAPbI3-based multication perovskites, moreover, over 10 mol % alloying is needed to convert δ phase to α phase at room temperature. The combined upper and lower limits for doping concentration restrict the appropriate alloying ratio to a narrow window. We further plot the relative energy diagram for triple-cation perovskite CsxMAyFA(1−x−y)PbI3, which reveals the ideal doping ratio for uniform stable alloying. This theory-experiment-combined study provides a clear microscopic picture of phase stability and segregation for mixed-cation perovskite solids.
000890166 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000890166 536__ $$0G:(DE-HGF)POF3-540$$a540 - Advanced Engineering Materials (POF3-500)$$cPOF3-500$$fPOF III$$x1
000890166 588__ $$aDataset connected to CrossRef
000890166 7001_ $$0P:(DE-HGF)0$$aZhao, Yicheng$$b1
000890166 7001_ $$00000-0001-6939-4771$$aZhang, Jiyun$$b2
000890166 7001_ $$0P:(DE-HGF)0$$aChen, Keqiu$$b3
000890166 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b4$$ufzj
000890166 7001_ $$0P:(DE-HGF)0$$aFeng, Yexin$$b5
000890166 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.095401$$gVol. 4, no. 9, p. 095401$$n9$$p095401$$tPhysical review materials$$v4$$x2475-9953$$y2020
000890166 8564_ $$uhttps://juser.fz-juelich.de/record/890166/files/Phase%20diagram%20and%20stability%20of%20mixed-cation%20lead%20iodide%20perovskites%3A%20A%20theory%20and%20experiment%20combined%20study.pdf$$yOpenAccess
000890166 909CO $$ooai:juser.fz-juelich.de:890166$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890166 9101_ $$0I:(DE-HGF)0$$60000-0001-6939-4771$$aExternal Institute$$b2$$kExtern
000890166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b4$$kFZJ
000890166 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000890166 9130_ $$1G:(DE-HGF)POF3-540$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lAdvanced Engineering Materials$$x1
000890166 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000890166 9141_ $$y2021
000890166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000890166 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000890166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2018$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890166 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000890166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000890166 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000890166 9801_ $$aFullTexts
000890166 980__ $$ajournal
000890166 980__ $$aVDB
000890166 980__ $$aUNRESTRICTED
000890166 980__ $$aI:(DE-Juel1)IEK-11-20140314
000890166 981__ $$aI:(DE-Juel1)IET-2-20140314