001     890166
005     20240712113018.0
024 7 _ |a 10.1103/PhysRevMaterials.4.095401
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 2128/27421
|2 Handle
024 7 _ |a WOS:000571166200001
|2 WOS
037 _ _ |a FZJ-2021-00755
082 _ _ |a 530
100 1 _ |a Xu, Zhengwei
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Phase diagram and stability of mixed-cation lead iodide perovskites: A theory and experiment combined study
260 _ _ |a College Park, MD
|c 2020
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615890429_15226
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alloying structurally similar perovskites to form mixed-cation lead iodide perovskites, e.g., CsxFA(1−x)PbI3, MAxFA(1−x)PbI3, and CsxMAyFA(1−x−y)PbI3, could improve the performance of perovskite-based solar cells and light-emitting diodes. However, a phase diagram of them and a clear understanding of the underlying atomic-scale mechanism are still lacking. Using ab initio calculations combined with high-throughput experimentation, we demonstrate the phase diagram of mixed-cation lead iodide perovskites. Only a small proportion of monovalent cations (Cs+/Rb+/MA+) could be incorporated into the FAPbI3/MAPbI3 matrix; otherwise it will be separated into δ-CsPbI3, δ-RbPbI3, MAI, etc. The smaller the radius of doping cations, the harder it is to incorporate them into a perovskite lattice and the easier it is to stabilize the perovskite phase. In FAPbI3-based multication perovskites, moreover, over 10 mol % alloying is needed to convert δ phase to α phase at room temperature. The combined upper and lower limits for doping concentration restrict the appropriate alloying ratio to a narrow window. We further plot the relative energy diagram for triple-cation perovskite CsxMAyFA(1−x−y)PbI3, which reveals the ideal doping ratio for uniform stable alloying. This theory-experiment-combined study provides a clear microscopic picture of phase stability and segregation for mixed-cation perovskite solids.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a 540 - Advanced Engineering Materials (POF3-500)
|0 G:(DE-HGF)POF3-540
|c POF3-500
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Yicheng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Jiyun
|0 0000-0001-6939-4771
|b 2
700 1 _ |a Chen, Keqiu
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 4
|u fzj
700 1 _ |a Feng, Yexin
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1103/PhysRevMaterials.4.095401
|g Vol. 4, no. 9, p. 095401
|0 PERI:(DE-600)2898355-5
|n 9
|p 095401
|t Physical review materials
|v 4
|y 2020
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/890166/files/Phase%20diagram%20and%20stability%20of%20mixed-cation%20lead%20iodide%20perovskites%3A%20A%20theory%20and%20experiment%20combined%20study.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890166
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0001-6939-4771
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176427
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Advanced Engineering Materials
|1 G:(DE-HGF)POF3-540
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|x 1
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2018
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21