000890174 001__ 890174
000890174 005__ 20240625095122.0
000890174 0247_ $$2doi$$a10.1021/acs.jpcb.0c09742
000890174 0247_ $$2ISSN$$a1089-5647
000890174 0247_ $$2ISSN$$a1520-5207
000890174 0247_ $$2ISSN$$a1520-6106
000890174 0247_ $$2Handle$$a2128/27291
000890174 0247_ $$2altmetric$$aaltmetric:96769701
000890174 0247_ $$2pmid$$a33369425
000890174 0247_ $$2WOS$$aWOS:000661200000009
000890174 037__ $$aFZJ-2021-00763
000890174 082__ $$a530
000890174 1001_ $$00000-0003-3982-953X$$aFerraro, Mariarosaria$$b0
000890174 245__ $$aMachine Learning of Allosteric Effects: The Analysis of Ligand-Induced Dynamics to Predict Functional Effects in TRAP1
000890174 260__ $$aWashington, DC$$bSoc.$$c2021
000890174 3367_ $$2DRIVER$$aarticle
000890174 3367_ $$2DataCite$$aOutput Types/Journal article
000890174 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614958049_26580
000890174 3367_ $$2BibTeX$$aARTICLE
000890174 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890174 3367_ $$00$$2EndNote$$aJournal Article
000890174 520__ $$aAllosteric molecules provide a powerful means to modulate protein function. However, the effect of such ligands on distal orthosteric sites cannot be easily described by classical docking methods. Here, we applied machine learning (ML) approaches to expose the links between local dynamic patterns and different degrees of allosteric inhibition of the ATPase function in the molecular chaperone TRAP1. We focused on 11 novel allosteric modulators with similar affinities to the target but with inhibitory efficacy between the 26.3 and 76%. Using a set of experimentally related local descriptors, ML enabled us to connect the molecular dynamics (MD) accessible to ligand-bound (perturbed) and unbound (unperturbed) systems to the degree of ATPase allosteric inhibition. The ML analysis of the comparative perturbed ensembles revealed a redistribution of dynamic states in the inhibitor-bound versus inhibitor-free systems following allosteric binding. Linear regression models were built to quantify the percentage of experimental variance explained by the predicted inhibitor-bound TRAP1 states. Our strategy provides a comparative MD–ML framework to infer allosteric ligand functionality. Alleviating the time scale issues which prevent the routine use of MD, a combination of MD and ML represents a promising strategy to support in silico mechanistic studies and drug design.
000890174 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000890174 588__ $$aDataset connected to CrossRef
000890174 7001_ $$0P:(DE-HGF)0$$aMoroni, Elisabetta$$b1
000890174 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b2
000890174 7001_ $$00000-0002-1088-7253$$aRinaldi, Silvia$$b3
000890174 7001_ $$0P:(DE-HGF)0$$aSanchez-Martin, Carlos$$b4
000890174 7001_ $$0P:(DE-HGF)0$$aRasola, Andrea$$b5
000890174 7001_ $$0P:(DE-HGF)0$$aPavarino, Luca F.$$b6$$eCorresponding author
000890174 7001_ $$00000-0002-1318-668X$$aColombo, Giorgio$$b7$$eCorresponding author
000890174 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.0c09742$$gVol. 125, no. 1, p. 101 - 114$$n1$$p101 - 114$$tThe journal of physical chemistry <Washington, DC> / B$$v125$$x1520-5207$$y2021
000890174 8564_ $$uhttps://juser.fz-juelich.de/record/890174/files/Supporting%20Information.docx$$yRestricted
000890174 8564_ $$uhttps://juser.fz-juelich.de/record/890174/files/Authors%27%20main%20text.pdf$$yOpenAccess
000890174 8564_ $$uhttps://juser.fz-juelich.de/record/890174/files/acs.jpcb.0c09742.pdf$$yOpenAccess
000890174 909CO $$ooai:juser.fz-juelich.de:890174$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890174 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich$$b2$$kFZJ
000890174 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000890174 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000890174 9141_ $$y2021
000890174 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000890174 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890174 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890174 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2018$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000890174 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000890174 920__ $$lyes
000890174 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000890174 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000890174 980__ $$ajournal
000890174 980__ $$aVDB
000890174 980__ $$aUNRESTRICTED
000890174 980__ $$aI:(DE-Juel1)IAS-5-20120330
000890174 980__ $$aI:(DE-Juel1)INM-9-20140121
000890174 9801_ $$aFullTexts