001     890174
005     20240625095122.0
024 7 _ |a 10.1021/acs.jpcb.0c09742
|2 doi
024 7 _ |a 1089-5647
|2 ISSN
024 7 _ |a 1520-5207
|2 ISSN
024 7 _ |a 1520-6106
|2 ISSN
024 7 _ |a 2128/27291
|2 Handle
024 7 _ |a altmetric:96769701
|2 altmetric
024 7 _ |a 33369425
|2 pmid
024 7 _ |a WOS:000661200000009
|2 WOS
037 _ _ |a FZJ-2021-00763
082 _ _ |a 530
100 1 _ |a Ferraro, Mariarosaria
|0 0000-0003-3982-953X
|b 0
245 _ _ |a Machine Learning of Allosteric Effects: The Analysis of Ligand-Induced Dynamics to Predict Functional Effects in TRAP1
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614958049_26580
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Allosteric molecules provide a powerful means to modulate protein function. However, the effect of such ligands on distal orthosteric sites cannot be easily described by classical docking methods. Here, we applied machine learning (ML) approaches to expose the links between local dynamic patterns and different degrees of allosteric inhibition of the ATPase function in the molecular chaperone TRAP1. We focused on 11 novel allosteric modulators with similar affinities to the target but with inhibitory efficacy between the 26.3 and 76%. Using a set of experimentally related local descriptors, ML enabled us to connect the molecular dynamics (MD) accessible to ligand-bound (perturbed) and unbound (unperturbed) systems to the degree of ATPase allosteric inhibition. The ML analysis of the comparative perturbed ensembles revealed a redistribution of dynamic states in the inhibitor-bound versus inhibitor-free systems following allosteric binding. Linear regression models were built to quantify the percentage of experimental variance explained by the predicted inhibitor-bound TRAP1 states. Our strategy provides a comparative MD–ML framework to infer allosteric ligand functionality. Alleviating the time scale issues which prevent the routine use of MD, a combination of MD and ML represents a promising strategy to support in silico mechanistic studies and drug design.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Moroni, Elisabetta
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ippoliti, Emiliano
|0 P:(DE-Juel1)146009
|b 2
700 1 _ |a Rinaldi, Silvia
|0 0000-0002-1088-7253
|b 3
700 1 _ |a Sanchez-Martin, Carlos
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rasola, Andrea
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pavarino, Luca F.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Colombo, Giorgio
|0 0000-0002-1318-668X
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acs.jpcb.0c09742
|g Vol. 125, no. 1, p. 101 - 114
|0 PERI:(DE-600)2006039-7
|n 1
|p 101 - 114
|t The journal of physical chemistry / B
|v 125
|y 2021
|x 1520-5207
856 4 _ |u https://juser.fz-juelich.de/record/890174/files/Supporting%20Information.docx
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890174/files/Authors%27%20main%20text.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/890174/files/acs.jpcb.0c09742.pdf
909 C O |o oai:juser.fz-juelich.de:890174
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)146009
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21