000890178 001__ 890178
000890178 005__ 20240625095114.0
000890178 0247_ $$2doi$$a10.1021/acs.jpclett.9b03798
000890178 0247_ $$2Handle$$a2128/27017
000890178 0247_ $$2altmetric$$aaltmetric:74701089
000890178 0247_ $$2pmid$$a31986051
000890178 0247_ $$2WOS$$aWOS:000515424300001
000890178 037__ $$aFZJ-2021-00767
000890178 082__ $$a530
000890178 1001_ $$00000-0001-7637-7355$$aRitacco, Ida$$b0
000890178 245__ $$aAll-Atom Simulations Disclose How Cytochrome Reductase Reshapes the Substrate Access/Egress Routes of Its Partner CYP450s
000890178 260__ $$aWashington, DC$$bACS$$c2020
000890178 3367_ $$2DRIVER$$aarticle
000890178 3367_ $$2DataCite$$aOutput Types/Journal article
000890178 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619159454_16149
000890178 3367_ $$2BibTeX$$aARTICLE
000890178 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890178 3367_ $$00$$2EndNote$$aJournal Article
000890178 520__ $$aCytochromes P450 enzymes (CYP450s) promote the oxidative metabolism of a variety of substrates via the electrons supplied by the cytochrome P450 reductase (CPR) and upon formation of a CPR/CYP450 adduct. In spite of the pivotal regulatory importance of this process, the impact of CPR binding on the functional properties of its partner CYP450 remains elusive. By performing multiple microsecond-long all-atom molecular dynamics simulations of a 520 000-atom model of a CPR/CYP450 adduct embedded in a membrane mimic, we disclose the molecular terms for their interactions, considering the aromatase (HA) enzyme as a proxy of the CYP450 family. Our study strikingly unveils that CPR binding alters HA’s functional motions, bolstering a change in the shape and type of the channels traveled by substrates/products during their access/egress to/from the enzyme’s active site. Our outcomes unprecedentedly contribute to extricate the many entangled facets of the CYP450 metabolon, redrafting its intricate panorama from an atomic-level perspective.
000890178 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000890178 536__ $$0G:(DE-Juel1)jias5a_20190501$$aPost-Transcriptional regulation mechanism of Human Aromatase investigated by molecular simulations (jias5a_20190501)$$cjias5a_20190501$$fPost-Transcriptional regulation mechanism of Human Aromatase investigated by molecular simulations$$x1
000890178 588__ $$aDataset connected to CrossRef
000890178 7001_ $$0P:(DE-HGF)0$$aSaltalamacchia, Andrea$$b1
000890178 7001_ $$00000-0002-8387-8956$$aSpinello, Angelo$$b2
000890178 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b3
000890178 7001_ $$00000-0002-2003-1985$$aMagistrato, Alessandra$$b4$$eCorresponding author
000890178 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.9b03798$$gVol. 11, no. 4, p. 1189 - 1193$$n4$$p1189 - 1193$$tThe journal of physical chemistry letters$$v11$$x1948-7185$$y2020
000890178 8564_ $$uhttps://juser.fz-juelich.de/record/890178/files/Main%20text.pdf$$yPublished on 2020-01-27. Available in OpenAccess from 2021-01-27.
000890178 8564_ $$uhttps://juser.fz-juelich.de/record/890178/files/acs.jpclett.9b03798.pdf$$yRestricted
000890178 909CO $$ooai:juser.fz-juelich.de:890178$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890178 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich$$b3$$kFZJ
000890178 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890178 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890178 9141_ $$y2020
000890178 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890178 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2018$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2018$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000890178 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000890178 920__ $$lyes
000890178 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000890178 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000890178 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000890178 980__ $$ajournal
000890178 980__ $$aVDB
000890178 980__ $$aI:(DE-Juel1)IAS-5-20120330
000890178 980__ $$aI:(DE-Juel1)INM-9-20140121
000890178 980__ $$aI:(DE-82)080012_20140620
000890178 980__ $$aUNRESTRICTED
000890178 9801_ $$aFullTexts