000890190 001__ 890190 000890190 005__ 20250129092445.0 000890190 0247_ $$2doi$$a10.1063/5.0002412 000890190 0247_ $$2ISSN$$a0021-9606 000890190 0247_ $$2ISSN$$a1089-7690 000890190 0247_ $$2ISSN$$a1520-9032 000890190 0247_ $$2Handle$$a2128/27032 000890190 0247_ $$2altmetric$$aaltmetric:81977094 000890190 0247_ $$2pmid$$a32414242 000890190 0247_ $$2WOS$$aWOS:000536240300002 000890190 037__ $$aFZJ-2021-00779 000890190 082__ $$a530 000890190 1001_ $$00000-0002-1321-7677$$aLehmkuhl, Sören$$b0$$eCorresponding author 000890190 245__ $$aSABRE polarized low field rare-spin spectroscopy 000890190 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2020 000890190 3367_ $$2DRIVER$$aarticle 000890190 3367_ $$2DataCite$$aOutput Types/Journal article 000890190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611593486_10623 000890190 3367_ $$2BibTeX$$aARTICLE 000890190 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890190 3367_ $$00$$2EndNote$$aJournal Article 000890190 520__ $$aHigh-field nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for identification and characterization of chemicals and biomolecular structures. In the vast majority of NMR experiments, nuclear spin polarization arises from thermalization in multi-Tesla magnetic fields produced by superconducting magnets. In contrast, NMR instruments operating at low magnetic fields are emerging as a compact, inexpensive, and highly accessible alternative but suffer from low thermal polarization at a low field strength and consequently a low signal. However, certain hyperpolarization techniques create high polarization levels on target molecules independent of magnetic fields, giving low-field NMR a significant sensitivity boost. In this study, SABRE (Signal Amplification By Reversible Exchange) was combined with high homogeneity electromagnets operating at mT fields, enabling high resolution 1H, 13C, 15N, and 19F spectra to be detected with a single scan at magnetic fields between 1 mT and 10 mT. Chemical specificity is attained at mT magnetic fields with complex, highly resolved spectra. Most spectra are in the strong coupling regime where J-couplings are on the order of chemical shift differences. The spectra and the hyperpolarization spin dynamics are simulated with SPINACH. The simulations start from the parahydrogen singlet in the bound complex and include both chemical exchange and spin evolution at these mT fields. The simulations qualitatively match the experimental spectra and are used to identify the spin order terms formed during mT SABRE. The combination of low field NMR instruments with SABRE polarization results in sensitive measurements, even for rare spins with low gyromagnetic ratios at low magnetic fields.I. INTRODUCTION 000890190 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000890190 588__ $$aDataset connected to CrossRef 000890190 7001_ $$0P:(DE-Juel1)162111$$aSuefke, Martin$$b1 000890190 7001_ $$0P:(DE-HGF)0$$aKentner, Arne$$b2 000890190 7001_ $$00000-0001-9986-5327$$aYen, Yi-Fen$$b3 000890190 7001_ $$00000-0002-1152-4438$$aBlümich, Bernhard$$b4 000890190 7001_ $$00000-0002-7194-002X$$aRosen, Matthew S.$$b5 000890190 7001_ $$0P:(DE-Juel1)133861$$aAppelt, Stephan$$b6 000890190 7001_ $$00000-0001-6779-9978$$aTheis, Thomas$$b7 000890190 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0002412$$gVol. 152, no. 18, p. 184202 -$$n18$$p184202 -$$tThe journal of chemical physics$$v152$$x1089-7690$$y2020 000890190 8564_ $$uhttps://juser.fz-juelich.de/record/890190/files/5.0002412.pdf$$yPublished on 2020-05-13. Available in OpenAccess from 2021-05-13. 000890190 909CO $$ooai:juser.fz-juelich.de:890190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000890190 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)162111$$a IEK-9$$b1 000890190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133861$$aForschungszentrum Jülich$$b6$$kFZJ 000890190 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000890190 9141_ $$y2020 000890190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000890190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2018$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-05$$wger 000890190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05 000890190 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger 000890190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05 000890190 920__ $$lyes 000890190 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0 000890190 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1 000890190 9801_ $$aFullTexts 000890190 980__ $$ajournal 000890190 980__ $$aVDB 000890190 980__ $$aUNRESTRICTED 000890190 980__ $$aI:(DE-Juel1)ZEA-2-20090406 000890190 980__ $$aI:(DE-Juel1)IEK-9-20110218 000890190 981__ $$aI:(DE-Juel1)PGI-4-20110106 000890190 981__ $$aI:(DE-Juel1)IET-1-20110218