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Abstract

The Solar-Era.net project PEARL TF-PV, [1], aims to reduce the uncertainties in the operation of thin-film
solar power plants. To this end, one of the main parts of the project is the gathering of performance data
and electroluminescence (EL) images of different types of thin-film solar cells and modules (see abstract of
Mirjam Theelen et al, this conference). Detailed, local information on the module performance is obtained
using EL imaging, which may provide early warning signs of degradation. A large number of samples (over 6000
modules) are analyzed, ranging from cells and modules produced in the different laboratories of the project
partners to industrially produced modules used in power plants. Measurements are performed in laboratories
as well as outdoor directly at the power plants location. All gathered data is stored in a database that in turn
is used to develop a failure catalogue for thin-film modules that describes typical defects, visible with EL in
various technologies, and their influence on the solar modules reliability and lifetime.

In this work we present a novel image segmentation approach, aiming to identify commonly occurring
defects in thin-film modules. We are building on top of the encoder-decoder neural networks framework, that
have established itself as a standard tool in many other image processing applications.

We demonstrate our software, PV-AIDED, is capable of fully automatic and fast EL image processing of
full-sizes modules. We are able to reliably identify frequently occurring defects in thin-film modules, such as
shunts and so called “droplets”. The framework is general and applicable to other types of defects, other types
of PV images, as well as other types of PV technology.

Keywords: encoder-decoder neural networks, thin-film, electroluminescence imaging

1 Introduction

Recently there has been an increasing interest in au-
tomated image analysis of spatially resolved character-
ization methods for photovoltaic (PV) modules such
as electroluminescence (EL) [2, |3, |4} 5] (6l 7, |8]. Such
automated image analysis aims at quality control of
modules and is thus of great interest for manufactur-
ers, PV system owners, and insurance companies, as it
allows for a systematic inspection of a large number of
modules, both prior and after installation.

An automated image analysis allows the systematic

analysis of a large number of module images. Thus,
it can greatly contribute to classify degradation modes
of modules and to the identification of early warning
signs or degradation.

In this work we discuss one of the segmentation
methods, that allows to assign a label to every pixel
in an image. For example, this allows to identify pixels
in EL images that correspond to some defect in a mod-
ule. This work extends our previous work, [§], and we
present here the so-called ensemble model framework
for image segmentation.

We demonstrate our software, PV-AIDED, is capa-
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ble to reliably detects various defect types. Further-
more, a combined statistical evaluation of the EL im-
age database reveals hidden features in EL images that
are not observed in individual images of the modules.
Our methods can be easily adapted for other types of
defects, as well as other types of technology.

The paper is organized as follows. Section [2| reviews
literature on the subject of automatic image analysis.
The available data used in this study and its prepro-
cessing is discussed in Section [B] Section [ elaborates
on our methodology. Section [f] and [6] discusses the
results and technical details of our implementation.
Lastly, this work is concluded in Section [7}

2 Literature

In photovoltaics automated image analysis methods
aim to solve different tasks. Although very different
aims are pursued, there are some common methods ap-
plied. For this reason we briefly review related works
on image analysis which can be roughly categorized as
follows; detecting and locating defects and other struc-
tures of interest, forecasting module performance, and
image collection itself.

Most works on locating and identifying structures
of interest revolves around cracks in crystalline silicon
solar modules. Works like [9} (10, |11, 12} {13] apply
methods like anisotropic diffusion, Fourier transform
or independent component analysis to filter images and
identify areas with cracks-like structures.

Deitsch et al. [4] train an SVM classifier based on the
extracted feature descriptors (SURF, KAZE, FAST),
and a VGG-net based neural network in order to iden-
tify defective cells that have an impact on power re-
duction of the whole module.

Demant et al. [2] proposes a Convolution Neural Net-
work (CNN) architecture to forecast IV characteristics
from a PL image as a production process control pro-
cedure.

When it comes to an application of these automatic
methods to the real data, several practical problems
arise. It is often the case that images taken in field
conditions suffer from various distortions due to the po-
sition of a module in front of a camera, lens distortions,
blurring due to wind and shocks. Such distortions in-
troduce complications in automatic image processing.
Therefore, a certain amount of work has been done in
the direction of EL image preprocessing analysis meth-
ods [3, 6, [7].

The encoder-decoder deep neural networks is being
applied very often in applications other than photo-
voltaics. Waldner and Diakogiannis [14] use encoder-
decoder neural networks to extract agriculture field
boundaries from satellite images. Iglovikov and Shvets
[15] use U-net with VGGI11 encoder network to seg-
ment satellite images in the Inria Aerial Image Label-
ing Dataset [16]. Havaei et al. [17] performs semantic
segmentation of the brain tumours using MRI imaging.
They explore the possibility to combine a simple CNN
in a cascaded fashion. Esteva et al. [18] use deep neural

network to classify different types of skin cancer. Attia
et al. [19] use combination of CNN and Recurrent Neu-
ral Networks (RNN) to identify a surgical tool location
in medical imaging. Kayalibay, Jensen, and Smagt |20]
adapt the U-net encoder-decoder style architecture for
the 3-dimensional input signal of the MRI images.

Recently the encoder-decoder networks we have ap-
plied to thin-film modules, [8]. In this work a series
of encoder-decoder networks have been trained and a
method to select the best model has been proposed.
To this end we used a multi-objective optimisation as
a first step of the procedure where we select all mod-
els lying on a Pareto frontier. After this we select the
model the highest average Jaccard index.

In this paper we extend our approach in [§] by com-
bining multiple trained models into a single ensemble
model.

3 Data

The data was acquired within the framework of the
PEARL-TF project. The website [1] contains detailed
information about the project and the involved part-
ners. In this project, the data from several solar parks
with thin-film modules was collected. In addition to EL
images, also performance characteristics of the modules
were measured.

The EL images are taken at predefined conditions
(selected fixed applied current and/or fixed applied
voltage). A silicon CCD sensor camera is used to mea-
sure subsequently several parts of the module, with the
images being stitched afterwards. The applied voltage
and the applied current together with the temperature
of the module are being recorded. The I/V character-
istics are also measured and the solar cell performance
parameters determined.

The database contains 6000 EL images of the co-
evaporated Copper Indium Gallium Diselenide (CIGS)
modules from the same manufacturer. Every image is
supplied with a measured performance data. A typ-
ical EL image of a thin-film CIGS module from our
database is depicted in Figure|[l} The module consists
of 150 connected cells in series (in Figurethe cells are
recognized as horizontal stripes). The cells are sepa-
rated by interconnection lines (horizontal dark lines in
Figure . In addition, the module is separated in 5
parallel sub-modules by vertical isolation lines (dark
vertical lines).

As mentioned before, every EL image consists of sev-
eral stitched images. Different stitched parts of the
image have different overall intensities (see Figure .
This is attributed to the metastable behaviour of CIGS
solar cells, where the electrical properties of the cell can
change during the measurement.

In order to obtain a labelled dataset we segment im-
ages manually. This work is done using two different
image editor programs. Firstly, we use the GNUE| Im-
age Manipulation Program (GIMP) [21] to create bi-
nary masks of various defects locations, where the de-

1GNU is a recursive acronym for GNU’s Not Unix!
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Figure 1: Thin-film module EL image. A module con-
sists of 150 cells (positioned horizontally) connected in
series. The cells are separated by interconnection lines
(horizontal dark lines). The module consist of sev-
eral submodules separated by vertical isolation lines,
which appear dark in the EL image. The EL image
is stitched (there are 1 horizontal and 3 vertical stitch
lines); overall intensities of different patches of images
are different. These intensity differences are attributed
to metastable changes during the measurement.

fect pixels are manually marked using a drawing pad
and a digital stylus. Alternatively, we use the Thin-
Fia program that is designed to identify defects in
EL images by introducing a grid-mesh. The ThinFia
program was developed within the PEARL-TF project.
A general image processing program such as GIMP re-
quires more time to segment an image, comparing to
the ThinFia, however, smaller defects are segmented
more accurately in GIMP.

In the image database we focus on the segmenta-
tion of “shunts”. Shunts are characterized by a more
conductive connection between the front and back elec-
trodes than the normal solar cell structure (i.e. the so-
lar cell structure is damaged or missing). There are
many causes for shunts. Commonly shunts originate
from debris of the copper evaporation source or pin-
holes in the CIGS absorber |23 . Figure [2) l (right)
depicts a shunt defect. Shunts generally appear as dark
areas with a gradient in intensity away from the actual
defect location. The dark area is confined to the area
of one cell. Severe shunts may also completely darken
a cell stripe, in which case often the neighboring cells
exhibit bright areas in the vicinity of the shunt .
Shunts are generally relevant to the solar module per-
formance, in particular under low light conditions.

In addition to shunts we noticed the CIGS modules
often exhibit “droplets” in the EL images. Figure [2]
(left) shows a detail of droplets. The appearance of
droplets resembles water stains and thus we speculate
these structures originate from the chemical bath de-
position. At this point it is unknown what the impact
of droplets is on the module performance, however, the
bright appearance imply a local change in quantum ef-
ficiency according to the reciprocity relations between
luminescence and quantum efficiency .

In total, we have about 6000 unlabelled, 142 labelled

i
I

Figure 2: Example of droplets (left) and a shunted area
(right). Here the cells are shown vertically.

module images with shunts, and 14 labelled module
images with droplets. The manual segmentation of
droplets in an image is particular laborious, hence only
few images are available.

All labelled images are split randomly onto a train-
ing and a testing datasets. The training dataset con-
sists 106 labelled shunts and 8 labelled droplets im-
ages. The testing dataset contains 24 labelled shunt
and 3 droplets images. In addition we evaluate the fi-
nal model using the remaining 12 images with shunts
and 3 images with droplets.

4 Methods

In this section we review methods that we use to build
segmentation models. The encoder-decoder deep neu-
ral network architectures, [27], are commonly used in
the semantic image segmentation problems,
. We build multiple models by combining different
encoder and decoder parts in the neural network archi-
tecture.

The encoder-decoder neural networks architecture
consists of two parts: the contraction part (or encoder)
and the symmetric expansion part (or decoder). The
encoder compresses information content of an arbitrar-
ily high-dimensional image into a feature vector. The
decoder gradually upscales the encoded features back
to the original resolution.

For the encoder part of our networks we use Mobile-
net , ResNet , VGG-net and U-net .
For the decoder part of our network we use U-net [31],
FCN-net , PSP-net and SegNet .

Different encoder can be mixed and matched with
different decoders. Combinations of encoders and de-
coders provide us with different segmentation networks
and we call these models as basis models. We train all
the combinations of encoder-decoder network and cre-
ate an ensemble model using a selection of them.

The ensemble model is constructed by combining
outputs of basis encoder-decoder models together with
the original image into a single multichannel image,
and training another encoder-decoder network on the
resulting image. This approach is similar to the so-
called cascaded neural networks discussed in .

It should be noted here that a special care should
be taken with the choice of the normalization trans-
formation for the ensemble model input. In our case
we work with binary segmentation images, and hence
normalisation is performed per channel. This allows
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to avoid unnecessary interactions that can happen if
normalisation is performed for all channels.

Figure [3] schematically demonstrates a structure of
our ensemble encoder-decoder architecture. The input
(on the left side) consist of a multichannel image, where
each channel is either an image or the output of one
of the encoder decoder networks. Each block in the
middle represents an output of the convolutional layer,
with the data flow going from left to right. The arrows
represent the skipping links, where the input for the
layer is copied from the encoder to the decoder parts.
Different networks may have different number of layers,
skipping connections and different activation functions.

To evaluate the quality of the model we use various
performance metrics: Jaccard index, as well as con-
nected component based precision and recall metrics.
Such metrics take values in the interval [0, 1], where 1
indicates the best results. For more details and discus-
sion on the choice of metrics we refer to [8].

The ensemble model has several advantages over ba-
sis encoder-decoder networks. Firstly, there is always a
trade-off between precision and recall metrics in mod-
els. Basis encoder-decoder networks can either identify
defects accurately, but miss many of them (precision is
high, recall is low), or identify many defects, but having
a big ratio of false-positive identifications (precision is
low, recall is high). Ensemble model allows to combine
multiple models together and improves this trade-off
balance. Therefore, we choose our models in ensemble
from a pareto frontier of the basis models. Secondly,
our basis encoder-decoder networks usually work with
small image patches of &~ 256 x 256. This imposes a re-
strictions on the size of a defect that can be detected,
as well as amount information incorporated in deci-
sion making. Ensemble models allows to apply models
on a larger input image patch, that provides a more
global outlook of a surroundings of a defect. Thirdly,
one may combine models that identify different defects
that allows to learn the interaction between effects for
defects occurring in the same region. And lastly, our
implementation of ensemble model is general, and thus
allows to use many types of images as channels, such
as features computed from the input image, other seg-
mentation methods (e.g. |35} [36]), or other measure-
mens (under different condistions or combining differ-
ent imaging methods). The latter option is particularly
interesting as it may introduce additional information
not present in a single image.

5 Results

To compute evaluation of a full sized module image we
compute evaluation on a set of overlapping subimages,
where the size of each subimage equals to the selected
model input image size.

We select a set of best performing basis models from
the computed Pareto frontier, and use this set in the
ensemble model. For the droplet model we select the
following 7 models: ResNet-SegNet, U-net, VGG-net-
SegNet, VGG-net-U-net, FCN-net-ResNet. For the

Table 1: Comparison of Jaccard index values for the
best basis and ensemble models for droplets and shunts
Basis model | Ensemble model

0.27 0.31

0.24 0.26

Droplets
Shunts

shunts model we select the following 3 models: PSP-
net, SegNet, U-net.

We train ensemble model on input patches with size
512 pixels. The basis encoder-decoder models that are
used ensemble all have input image patch of 256 pixels.
Large input image allows to incorporate more global
information about defects and their neighbourhood.

For the ensemble model we select the multichannel
version of the VGG-net-U-net network. We train the
model for 100 epoch with 512 gradient descent steps in
each epoch.

Figures[dshow comparison of the Pareto frontiers for
basis encoder-decoder models (red line) and the Pareto
frontier for the ensemble model (blue line). Each dots
on the plots correspond to a single model, with x-axis
showing a precision and y-axis showing a recall metrics,
as defined in [8]. The Pareto frontier for the ensemble
models consists of training checkpoints.

Figures 4| demonstrate that ensemble model improve
upon the basis models, as the Pareto frontier for en-
semble models is located above the Pareto frontier for
the basis models.

Table [1| compares values of the Jaccard index be-
tween the best basis model and the best ensemble
model. Those points are indicated with a red circle
on Figure [

Figure [p| shows an example of model segmentation.
This compares segmentation of the best basis model
and the ensemble model. The top row shows the seg-
mentation with the best basis model, and the bottom
row shows the segmentation with the ensemble model.
It is clear that differences are rather subtle, however
the proposed metrics are able to capture it.

We apply the segmentation model for droplets and
shunts for each EL image in our database. By eval-
uating an average of the computed binary segmented
image, we obtain so-called heat maps. Figures[6]and [7]
depict heat maps based on 6000 EL images for droplet
and shunts locations. The brighter areas correspond
to locations where defects have a higher probability of
occurrence. The heat maps are given with a scale that
maps pixel value in heat map images to a probability
of shunts or droplets in that pixel. Note, that the scale
is logarithmic in Figurem7 with the 1% of the brightest
observations being squeezed in the white color.

The droplets in Figure [6] expresses a clear structure
where droplets are distributed along a broad arc along
three edges of the module. In the brighter areas of
the arc, the probability that a pixel is marked as a
droplet is about 2.5% (148 times in 6000 images). The
droplets do not occur in the center of the modules.
Furthermore, there are several dark lines where fewer
droplets are detected. The vertical and horizontal dark
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computational layers. The right-hand side image is an output binary image. The arrows are skipping connection
layers, where input is being copied directly from encoder to a decoder.
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Figure 4: Comparison of the Pareto frontier for basis
models (red line) and ensemble models (blue line) for
droplets (top) and shunts (bottom). Individual dots
correspond to individual models.

lines appear to be interference of vertical isolation lines
in the modules as well as stitching lines in the image.
However, the diagonal lines do not correspond to any
obvious structure in the images that may interfere with
droplet detection. We infer the diagonal lines have a
physical origin.

The heat map of shunts is shown in Figure |7l There
is a great number of features to be seen, such as a
clear banded structure, high concentrations at certain
edges and locations, such as at the bottom edge where
at the isolation lines high concentrations of shunts are
detected. Two cell stripes in the bottom half of the
module are more often shunted. The stitching lines
do not show up and thus do not seem to interfere with
shunt detection. The isolation lines are associated with
more detected shunts. However, only parts of the iso-
lation lines exhibit a larger concentration of shunts and
not all isolation lines are equally affected. For this rea-
son we believe the higher shunt probability around the
isolation lines is no artifact. There is a bright vertical
line in the center. This line does not correspond to the
position of an isolation line or stitching line. Note that
in Figure [7] a slightly darker vertical line is visible at
the same position. However, in this example no shunts
are detected along this line. In other EL images this
darker line is not present (e.g. in Figure . The origin
of this line is unclear.

We would like to note that many features in Fig-
ures [6l and [ are rather subtle in that these features
only become visible when analyzing a large number of
images. Furthermore, some of these features are quite
certainly performance and reliability relevant (e.g. po-
sitions where shunts are likely to occur). We thus be-
lieve the extraction of such features can give manu-
facturers a better insight in their production process
and thus contribute to process optimization and qual-
ity control.
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B

Figure 5: Visual comparison of the best basis model (top row), and the ensemble model (bottom row). The left
column shows the original image, the right column shows the segmentation image, the middle column shows

overlayed original image with the segmentation image.

0 6.1e-3 1.2e-2 1.8e-2 2.5e-2
Figure 6: Heat map of droplets locations. The inten-
sity scale indicates the probablity a pixel is marked as

droplet.

0 6.8e-4

1.8e-3 3.7e-3 >7.0e-3
Figure 7: Heat map of shunts locations. The inten-
sity scale indicates the probability a pixel is marked as

shunt.

Table 2: Time (seconds) and memory (gigabytes) re-
quirements for model evaluations

Model Time | Maximum Memory
Shunts 28s 3.5GB
Droplets | 50s 3.2GB

6 Implementation, timing and

memory usage

Our ensemble models require computation of basis
encoder-decoder networks before the ensemble model
can be computed. In our current implementation due
to the memory restriction the basis encoder-decoder
networks are in parallel computed on a Intel Xeon CPU
with 88 threads, with the ensemble model is computed
on a NVIDIA Quadro M5000 graphic card. Table [2]
shows average time and memory required to segment a
single EL-image. The computations are performed on
100 test images.

Our implementation uses Keras, , library with
combination of Tensorflow, . We incorporate in
our code publicly available implementations of several
networks implemented in . Furthermore, for the
computation of several metrics we use the scikit-image
library, [40].

The data analysis and plots have been done using R
and ggplot2 package . The simulation script
uses the GNU-parallel bash utility [43].

7 Conclusions and outlook

In this paper we proposed an ensemble model to com-
bine several encoder-decoder networks together in or-
der to perform image segmentation of EL images of
thin-film modules. Our results indicate that the com-
bined model performs better that the basis encoder-
decoder networks.

The multichannel encoder-decoder framework is not
restricted to ensemble of encoder-decoder models only,
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but allows to incorporate arbitrary segmentation mod-
els together. Generally speaking, the multiple-channel
input encoder-decoder networks can be used also for
other purposes. We conjecture that such networks can
be used to improve segmentation on images where mul-
tiple EL image with different measurement conditions
are used. Furthermore, different types of measure-
ments can be used simultaneously, e.g. thermography
and EL images.

Our image segmentation framework is general and
can be adapted for other types of defects in thin-film
modules, as well as different type of PV technology
(e.g. crystalline technology).

We apply our ensemble models in order to identify
droplets and shunts in a database with 6000 images of
CIGS modules, all of one module type and one manu-
facturer. We show heat maps depicting the probability
of a shunt or droplet occurring at a certain location
in the solar module. The results show that the sys-
tematic segmentation of a large volume of images can
reveal subtle features which cannot be inferred from
studying individual images. Thus, we argue this type
of segmentation models may aid process optimization
and quality control by manufacturers.
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