000890221 001__ 890221
000890221 005__ 20230127125338.0
000890221 0247_ $$2doi$$a10.1525/elementa.420
000890221 0247_ $$2Handle$$a2128/27043
000890221 0247_ $$2altmetric$$aaltmetric:83656765
000890221 0247_ $$2WOS$$aWOS:000538766300001
000890221 037__ $$aFZJ-2021-00810
000890221 041__ $$aEnglish
000890221 082__ $$a550
000890221 1001_ $$0P:(DE-HGF)0$$aCooper, Owen$$b0$$eCorresponding author
000890221 245__ $$aMulti-decadal surface ozone trends at globally distributed remote locations
000890221 260__ $$aWashington, DC$$bBioOne$$c2020
000890221 3367_ $$2DRIVER$$aarticle
000890221 3367_ $$2DataCite$$aOutput Types/Journal article
000890221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611651198_21383
000890221 3367_ $$2BibTeX$$aARTICLE
000890221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890221 3367_ $$00$$2EndNote$$aJournal Article
000890221 520__ $$aExtracting globally representative trend information from lower tropospheric ozone observations is extremely difficult due to the highly variable distribution and interannual variability of ozone, and the ongoing shift of ozone precursor emissions from high latitudes to low latitudes. Here we report surface ozone trends at 27 globally distributed remote locations (20 in the Northern Hemisphere, 7 in the Southern Hemisphere), focusing on continuous time series that extend from the present back to at least 1995. While these sites are only representative of less than 25% of the global surface area, this analysis provides a range of regional long-term ozone trends for the evaluation of global chemistry-climate models. Trends are based on monthly mean ozone anomalies, and all sites have at least 20 years of data, which improves the likelihood that a robust trend value is due to changes in ozone precursor emissions and/or forced climate change rather than naturally occurring climate variability. Since 1995, the Northern Hemisphere sites are nearly evenly split between positive and negative ozone trends, while 5 of 7 Southern Hemisphere sites have positive trends. Positive trends are in the range of 0.5–2 ppbv decade–1, with ozone increasing at Mauna Loa by roughly 50% since the late 1950s. Two high elevation Alpine sites, discussed by previous assessments, exhibit decreasing ozone trends in contrast to the positive trend observed by IAGOS commercial aircraft in the European lower free-troposphere. The Alpine sites frequently sample polluted European boundary layer air, especially in summer, and can only be representative of lower free tropospheric ozone if the data are carefully filtered to avoid boundary layer air. The highly variable ozone trends at these 27 surface sites are not necessarily indicative of free tropospheric trends, which have been overwhelmingly positive since the mid-1990s, as shown by recent studies of ozonesonde and aircraft observations.
000890221 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000890221 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000890221 588__ $$aDataset connected to CrossRef
000890221 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b1$$ufzj
000890221 7001_ $$0P:(DE-Juel1)16212$$aSchröder, Sabine$$b2$$ufzj
000890221 7001_ $$0P:(DE-HGF)0$$aChang, Kai-Lan$$b3
000890221 7001_ $$0P:(DE-HGF)0$$aGaudel, Audrey$$b4
000890221 7001_ $$0P:(DE-HGF)0$$aBenítez, Gerardo Carbajal$$b5
000890221 7001_ $$0P:(DE-HGF)0$$aCuevas, Emilio$$b6
000890221 7001_ $$0P:(DE-HGF)0$$aFröhlich, Marina$$b7
000890221 7001_ $$0P:(DE-HGF)0$$aGalbally, Ian E.$$b8
000890221 7001_ $$0P:(DE-HGF)0$$aMolloy, Suzie$$b9
000890221 7001_ $$0P:(DE-HGF)0$$aKubistin, Dagmar$$b10
000890221 7001_ $$0P:(DE-HGF)0$$aLu, Xiao$$b11
000890221 7001_ $$0P:(DE-HGF)0$$aMcClure-Begley, Audra$$b12
000890221 7001_ $$0P:(DE-HGF)0$$aNédélec, Philippe$$b13
000890221 7001_ $$0P:(DE-HGF)0$$aO’Brien, Jason$$b14
000890221 7001_ $$0P:(DE-HGF)0$$aOltmans, Samuel J.$$b15
000890221 7001_ $$0P:(DE-HGF)0$$aPetropavlovskikh, Irina$$b16
000890221 7001_ $$0P:(DE-HGF)0$$aRies, Ludwig$$b17
000890221 7001_ $$0P:(DE-HGF)0$$aSenik, Irina$$b18
000890221 7001_ $$0P:(DE-HGF)0$$aSjöberg, Karin$$b19
000890221 7001_ $$0P:(DE-HGF)0$$aSolberg, Sverre$$b20
000890221 7001_ $$0P:(DE-HGF)0$$aSpain, Gerard T.$$b21
000890221 7001_ $$0P:(DE-HGF)0$$aSpangl, Wolfgang$$b22
000890221 7001_ $$0P:(DE-HGF)0$$aSteinbacher, Martin$$b23
000890221 7001_ $$0P:(DE-HGF)0$$aTarasick, David$$b24
000890221 7001_ $$0P:(DE-HGF)0$$aThouret, Valerie$$b25
000890221 7001_ $$0P:(DE-HGF)0$$aXu, Xiaobin$$b26
000890221 773__ $$0PERI:(DE-600)2745461-7$$a10.1525/elementa.420$$gVol. 8, p. 23$$p23$$tElementa$$v8$$x2325-1026$$y2020
000890221 8564_ $$uhttps://juser.fz-juelich.de/record/890221/files/420-7199-2-pb.pdf$$yOpenAccess
000890221 909CO $$ooai:juser.fz-juelich.de:890221$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b1$$kFZJ
000890221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich$$b2$$kFZJ
000890221 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000890221 9141_ $$y2020
000890221 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-20
000890221 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890221 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELEMENTA-SCI ANTHROP : 2018$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890221 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-20
000890221 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-20
000890221 920__ $$lyes
000890221 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000890221 980__ $$ajournal
000890221 980__ $$aVDB
000890221 980__ $$aUNRESTRICTED
000890221 980__ $$aI:(DE-Juel1)JSC-20090406
000890221 9801_ $$aFullTexts