000890229 001__ 890229
000890229 005__ 20230522110533.0
000890229 0247_ $$2doi$$a10.3390/cancers12123835
000890229 0247_ $$2Handle$$a2128/27048
000890229 0247_ $$2altmetric$$aaltmetric:96544102
000890229 0247_ $$2pmid$$a33353180
000890229 0247_ $$2WOS$$aWOS:000601842800001
000890229 037__ $$aFZJ-2021-00816
000890229 041__ $$aEnglish
000890229 082__ $$a610
000890229 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author
000890229 245__ $$aFET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation
000890229 260__ $$aBasel$$bMDPI$$c2020
000890229 3367_ $$2DRIVER$$aarticle
000890229 3367_ $$2DataCite$$aOutput Types/Journal article
000890229 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611738394_16236
000890229 3367_ $$2BibTeX$$aARTICLE
000890229 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890229 3367_ $$00$$2EndNote$$aJournal Article
000890229 520__ $$aCurrently, a reliable diagnostic test for differentiating pseudoprogression from early tumor progression is lacking. We explored the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) radiomics for this clinically important task. Thirty-four patients (isocitrate dehydrogenase (IDH)-wildtype glioblastoma, 94%) with progressive magnetic resonance imaging (MRI) changes according to the Response Assessment in Neuro-Oncology (RANO) criteria within the first 12 weeks after completing temozolomide chemoradiation underwent a dynamic FET PET scan. Static and dynamic FET PET parameters were calculated. For radiomics analysis, the number of datasets was increased to 102 using data augmentation. After randomly assigning patients to a training and test dataset, 944 features were calculated on unfiltered and filtered images. The number of features for model generation was limited to four to avoid data overfitting. Eighteen patients were diagnosed with early tumor progression, and 16 patients had pseudoprogression. The FET PET radiomics model correctly diagnosed pseudoprogression in all test cohort patients (sensitivity, 100%; negative predictive value, 100%). In contrast, the diagnostic performance of the best FET PET parameter (TBRmax) was lower (sensitivity, 81%; negative predictive value, 80%). The results suggest that FET PET radiomics helps diagnose patients with pseudoprogression with a high diagnostic performance. Given the clinical significance, further studies are warranted
000890229 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000890229 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1
000890229 588__ $$aDataset connected to CrossRef
000890229 7001_ $$00000-0002-3536-5945$$aElahmadawy, Mai A.$$b1
000890229 7001_ $$0P:(DE-Juel1)181076$$aGutsche, Robin$$b2
000890229 7001_ $$00000-0001-7147-4594$$aWerner, Jan-Michael$$b3
000890229 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K.$$b4
000890229 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b5
000890229 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b6
000890229 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph W.$$b7
000890229 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b8
000890229 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b9
000890229 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b10$$ufzj
000890229 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b11
000890229 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b12
000890229 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers12123835$$gVol. 12, no. 12, p. 3835 -$$n12$$p3835 -$$tCancers$$v12$$x2072-6694$$y2020
000890229 8564_ $$uhttps://juser.fz-juelich.de/record/890229/files/Invoice_MDPI_cancers-1041982_1738.52EUR.pdf
000890229 8564_ $$uhttps://juser.fz-juelich.de/record/890229/files/Lohmann_2020_Cancers_FET%20PET%20radiomics%20for%20differentiating%20....pdf$$yOpenAccess
000890229 8767_ $$81041982$$92020-12-17$$d2021-01-27$$eAPC$$jZahlung erfolgt$$pcancers-1041982$$zFZJ-2020-05356, Belegnummer 1200161222
000890229 909CO $$ooai:juser.fz-juelich.de:890229$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181076$$aForschungszentrum Jülich$$b2$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b6$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b7$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b10$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b11$$kFZJ
000890229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b12$$kFZJ
000890229 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000890229 9141_ $$y2020
000890229 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2018$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000890229 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890229 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890229 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2018$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-11
000890229 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000890229 920__ $$lyes
000890229 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000890229 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000890229 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000890229 980__ $$ajournal
000890229 980__ $$aVDB
000890229 980__ $$aI:(DE-Juel1)INM-3-20090406
000890229 980__ $$aI:(DE-Juel1)INM-4-20090406
000890229 980__ $$aI:(DE-Juel1)INM-11-20170113
000890229 980__ $$aAPC
000890229 980__ $$aUNRESTRICTED
000890229 9801_ $$aAPC
000890229 9801_ $$aFullTexts