001     890229
005     20230522110533.0
024 7 _ |a 10.3390/cancers12123835
|2 doi
024 7 _ |a 2128/27048
|2 Handle
024 7 _ |a altmetric:96544102
|2 altmetric
024 7 _ |a 33353180
|2 pmid
024 7 _ |a WOS:000601842800001
|2 WOS
037 _ _ |a FZJ-2021-00816
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 0
|e Corresponding author
245 _ _ |a FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611738394_16236
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Currently, a reliable diagnostic test for differentiating pseudoprogression from early tumor progression is lacking. We explored the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) radiomics for this clinically important task. Thirty-four patients (isocitrate dehydrogenase (IDH)-wildtype glioblastoma, 94%) with progressive magnetic resonance imaging (MRI) changes according to the Response Assessment in Neuro-Oncology (RANO) criteria within the first 12 weeks after completing temozolomide chemoradiation underwent a dynamic FET PET scan. Static and dynamic FET PET parameters were calculated. For radiomics analysis, the number of datasets was increased to 102 using data augmentation. After randomly assigning patients to a training and test dataset, 944 features were calculated on unfiltered and filtered images. The number of features for model generation was limited to four to avoid data overfitting. Eighteen patients were diagnosed with early tumor progression, and 16 patients had pseudoprogression. The FET PET radiomics model correctly diagnosed pseudoprogression in all test cohort patients (sensitivity, 100%; negative predictive value, 100%). In contrast, the diagnostic performance of the best FET PET parameter (TBRmax) was lower (sensitivity, 81%; negative predictive value, 80%). The results suggest that FET PET radiomics helps diagnose patients with pseudoprogression with a high diagnostic performance. Given the clinical significance, further studies are warranted
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|x 0
|f POF III
536 _ _ |a DFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie
|0 G:(GEPRIS)428090865
|c 428090865
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Elahmadawy, Mai A.
|0 0000-0002-3536-5945
|b 1
700 1 _ |a Gutsche, Robin
|0 P:(DE-Juel1)181076
|b 2
700 1 _ |a Werner, Jan-Michael
|0 0000-0001-7147-4594
|b 3
700 1 _ |a Bauer, Elena K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 6
700 1 _ |a Lerche, Christoph W.
|0 P:(DE-Juel1)164254
|b 7
700 1 _ |a Rapp, Marion
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 9
700 1 _ |a Shah, Nadim J.
|0 P:(DE-Juel1)131794
|b 10
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 11
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 12
773 _ _ |a 10.3390/cancers12123835
|g Vol. 12, no. 12, p. 3835 -
|0 PERI:(DE-600)2527080-1
|n 12
|p 3835 -
|t Cancers
|v 12
|y 2020
|x 2072-6694
856 4 _ |u https://juser.fz-juelich.de/record/890229/files/Invoice_MDPI_cancers-1041982_1738.52EUR.pdf
856 4 _ |u https://juser.fz-juelich.de/record/890229/files/Lohmann_2020_Cancers_FET%20PET%20radiomics%20for%20differentiating%20....pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890229
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)181076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)164254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCERS : 2018
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCERS : 2018
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21