% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@INPROCEEDINGS{Marcocci:890232,
      author       = {Marcocci, S. and Agostini, M. and Altenmüller, K. and
                      Appel, S. and Atroshchenko, V. and Bagdasarian, Zara and
                      Basilico, D. and Bellini, G. and Benziger, J. and Bick, D.
                      and Bonfini, G. and Bravo, D. and Caccianiga, B. and
                      Calaprice, F. and Caminata, A. and Caprioli, S. and Carlini,
                      M. and Cavalcante, P. and Chepurnov, A. and Choi, K. and
                      Collica, L. and D'Angelo, D. and Davini, S. and Derbin, A.
                      and Ding, X. F. and Ludovico, A. Di and Noto, L. Di and
                      Drachnev, I. and Fomenko, K. and Formozov, A. and Franco, D.
                      and Gabriele, F. and Galbiati, C. and Ghiano, C. and
                      Giammarchi, M. and Goretti, A. and Gromov, M. and Guffanti,
                      D. and Hagner, C. and Houdy, T. and Hungerford, E. and
                      Ianni, Aldo and Ianni, Andrea and Jany, A. and Jeschke, D.
                      and Kobychev, V. and Korablev, D. and Korga, G. and Kryn, D.
                      and Laubenstein, M. and Litvinovich, E. and Lombardi, F. and
                      Lombardi, P. and Ludhova, Livia and Lukyanchenko, G. and
                      Lukyanchenko, L. and Machulin, I. and Manuzio, G. and
                      Martyn, J. and Meroni, E. and Meyer, M. and Miramonti, L.
                      and Misiaszek, M. and Muratova, V. and Neumair, B. and
                      Oberauer, L. and Opitz, B. and Orekhov, V. and Ortica, F.
                      and Pallavicini, M. and Papp, L. and Penek, Ömer and
                      Pilipenko, N. and Pocar, A. and Porcelli, A. and Ranucci, G.
                      and Razeto, A. and Re, A. and Redchuk, Mariia and Romani, A.
                      and Roncin, R. and Rossi, N. and Schönert, S. and Semenov,
                      D. and Skorokhvatov, M. and Smirnov, O. and Sotnikov, A. and
                      Stokes, L. F. F. and Suvorov, Y. and Tartaglia, R. and
                      Testera, G. and Thurn, J. and Toropova, M. and Unzhakov, E.
                      and Vishneva, A. and Vogelaar, R. B. and von Feilitzsch, F.
                      and Wang, H. and Weinz, S. and Wojcik, M. and Wurm, M. and
                      Yokley, Z. and Zaimidoroga, O. and Zavatarelli, S. and
                      Zuber, K. and Zuzel, G. and {BOREXINO Collaboration}},
      title        = {{T}he {M}onte {C}arlo simulation of the {B}orexino
                      detector},
      journal      = {Journal of physics / Conference Series},
      volume       = {1342},
      number       = {1},
      issn         = {1742-6588},
      address      = {Bristol},
      publisher    = {IOP Publ.87703},
      reportid     = {FZJ-2021-00819},
      pages        = {012035},
      year         = {2020},
      abstract     = {Borexino is a 300 ton sub-MeV liquid scintillator solar
                      neutrino detector which has been running at the Laboratori
                      Nazionali del Gran Sasso (Italy) since 2007. Thanks to its
                      unprecedented radio-purity, it was able to measure the flux
                      of 7Be, 8B, pp, and pep solar neutrinos and to detect
                      geo-neutrinos. A reliable simulation of the detector is an
                      invaluable tool for all Borexino physics analyses. The
                      simulation accounts for the energy loss of particles in all
                      the detector components, the generation of the scintillation
                      photons, their propagation within the liquid scintillator
                      volume, and a detailed simulation of the electronics chain.
                      A novel efficient method for simulating the external
                      background which survives the Borexino passive shield was
                      developed. This technique allows to reliably predict the
                      effect of the contamination in the peripheral construction
                      materials. The techniques developed to simulate the Borexino
                      detector and their level of refinement are of possible
                      interest to the neutrino and dark matter communities,
                      especially for current and future large-volume liquid
                      scintillator experiments.},
      month         = {Jul},
      date          = {2017-07-24},
      organization  = {15th International Conference on
                       Topics in Astroparticle and Underground
                       Physics, Sudbury (Canada), 24 Jul 2017
                       - 28 Jul 2017},
      keywords     = {scintillation counter: liquid (INSPIRE) / Borexino
                      (INSPIRE) / numerical calculations: Monte Carlo (INSPIRE) /
                      numerical methods (INSPIRE) / programming (INSPIRE) /
                      background (INSPIRE)},
      cin          = {IKP-2},
      ddc          = {530},
      cid          = {I:(DE-Juel1)IKP-2-20111104},
      pnm          = {612 - Cosmic Matter in the Laboratory (POF3-612)},
      pid          = {G:(DE-HGF)POF3-612},
      typ          = {PUB:(DE-HGF)16 / PUB:(DE-HGF)8},
      UT           = {WOS:001432953400035},
      doi          = {10.1088/1742-6596/1342/1/012035},
      url          = {https://juser.fz-juelich.de/record/890232},
}