000890235 001__ 890235
000890235 005__ 20250813203210.0
000890235 0247_ $$2doi$$a10.1088/1742-6596/1342/1/012105
000890235 0247_ $$2INSPIRETeX$$aBagdasarian:2020iwh
000890235 0247_ $$2inspire$$ainspire:1776454
000890235 0247_ $$2ISSN$$a1742-6588
000890235 0247_ $$2ISSN$$a1742-6596
000890235 0247_ $$2Handle$$a2128/27061
000890235 0247_ $$2altmetric$$aaltmetric:75769787
000890235 0247_ $$2WOS$$aWOS:001432953400105
000890235 037__ $$aFZJ-2021-00822
000890235 082__ $$a530
000890235 1001_ $$0P:(DE-Juel1)156420$$aBagdasarian, Zara$$b0
000890235 1112_ $$a15th International Conference on Topics in Astroparticle and Underground Physics$$cSudbury$$d2017-07-24 - 2017-07-28$$gTAUP 2017$$wCanada
000890235 245__ $$aAnalytical response function for the Borexino solar neutrino analysis
000890235 260__ $$aBristol$$bIOP Publ.87703$$c2020
000890235 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-01-01
000890235 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2020-01-01
000890235 300__ $$a5
000890235 3367_ $$2ORCID$$aCONFERENCE_PAPER
000890235 3367_ $$033$$2EndNote$$aConference Paper
000890235 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000890235 3367_ $$2BibTeX$$aINPROCEEDINGS
000890235 3367_ $$2DRIVER$$aconferenceObject
000890235 3367_ $$2DataCite$$aOutput Types/Conference Paper
000890235 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1754991987_22862
000890235 520__ $$aBorexino experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and its primary goal is detecting solar neutrinos, in particular those below 2 MeV, with unprecedentedly high sensitivity. Its technical distinctive feature is the ultra-low radioactive background of the inner scintillating core, which is the basis of the outstanding achievements obtained by the experiment (fluxes of 7Be, pep, pp, and limit on CNO). A spectral fit in the whole energy range from 200 keV up to 2 MeV has been performed for the first time, allowing to obtain simultaneously fluxes of all the solar neutrino components. To make such a fit possible, one requires the exact shapes of neutrino signals and backgrounds, as seen in the detector. Therefore, the transformation of the spectra from the original energy scale to the scale of the desired energy estimator, such as the number of hit PMTs or photoelectrons, is one of the key steps of the analysis. This conversion accounts for the energy scale non-linearity and the detector’s energy response, and can be performed using two approaches: the Monte Carlo simulation and the use of analytical models. The details and advantages of the analytical approach are presented in this contribution.
000890235 536__ $$0G:(DE-HGF)POF3-612$$a612 - Cosmic Matter in the Laboratory (POF3-612)$$cPOF3-612$$fPOF III$$x0
000890235 542__ $$2Crossref$$i2020-01-01$$uhttp://creativecommons.org/licenses/by/3.0/
000890235 542__ $$2Crossref$$i2020-01-01$$uhttps://iopscience.iop.org/info/page/text-and-data-mining
000890235 588__ $$aDataset connected to CrossRef, INSPIRE
000890235 650_7 $$2INSPIRE$$atalk: Sudbury 2017/07/24
000890235 650_7 $$2INSPIRE$$aneutrino: solar
000890235 650_7 $$2INSPIRE$$abackground: radioactivity
000890235 650_7 $$2INSPIRE$$aGran Sasso
000890235 650_7 $$2INSPIRE$$aBorexino
000890235 650_7 $$2INSPIRE$$ascintillation counter
000890235 650_7 $$2INSPIRE$$aphotomultiplier
000890235 650_7 $$2INSPIRE$$aphotoelectron
000890235 650_7 $$2INSPIRE$$asensitivity
000890235 650_7 $$2INSPIRE$$anumerical calculations: Monte Carlo
000890235 650_7 $$2INSPIRE$$aestimator
000890235 650_7 $$2INSPIRE$$aspectral
000890235 650_7 $$2INSPIRE$$astatistical analysis
000890235 650_7 $$2INSPIRE$$adata analysis method
000890235 7001_ $$0P:(DE-HGF)0$$aDing, X.$$b1
000890235 7001_ $$0P:(DE-HGF)0$$aVishneva, A.$$b2
000890235 7001_ $$0P:(DE-HGF)0$$aBOREXINO Collaboration$$b3
000890235 77318 $$2Crossref$$3journal-article$$a10.1088/1742-6596/1342/1/012105$$bIOP Publishing$$d2020-01-01$$n1$$p012105$$tJournal of Physics: Conference Series$$v1342$$x1742-6588$$y2020
000890235 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/1342/1/012105$$gVol. 1342, no. 1, p. 012105 -$$n1$$p012105$$tJournal of physics / Conference Series$$v1342$$x1742-6588$$y2020
000890235 8564_ $$uhttps://juser.fz-juelich.de/record/890235/files/Bagdasarian_2020_J._Phys.%20_Conf._Ser._1342_012105.pdf$$yOpenAccess
000890235 909CO $$ooai:juser.fz-juelich.de:890235$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890235 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156420$$aForschungszentrum Jülich$$b0$$kFZJ
000890235 9131_ $$0G:(DE-HGF)POF3-612$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vCosmic Matter in the Laboratory$$x0
000890235 9141_ $$y2020
000890235 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000890235 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000890235 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000890235 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890235 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
000890235 980__ $$acontrib
000890235 980__ $$aVDB
000890235 980__ $$ajournal
000890235 980__ $$aI:(DE-Juel1)IKP-2-20111104
000890235 980__ $$aUNRESTRICTED
000890235 9801_ $$aFullTexts
000890235 999C5 $$1Alimonti$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2008.11.076$$p568 -$$tNuclear Instruments and Methods A.$$v600$$y2009
000890235 999C5 $$1Agostini$$2Crossref$$oAgostini 2017$$y2017
000890235 999C5 $$1Marcocci$$2Crossref$$oMarcocci 2017$$y2017
000890235 999C5 $$1Smirnov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2008.07.139$$p410 -$$tNucl. Inst. Meth. in Physics Research Section A.$$v595$$y2008
000890235 999C5 $$1Bellini$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.89.112007$$tPhysical Review D$$v89$$y2014