000890254 001__ 890254
000890254 005__ 20240712113250.0
000890254 0247_ $$2doi$$a10.1039/D0CP02094J
000890254 0247_ $$2ISSN$$a1463-9076
000890254 0247_ $$2ISSN$$a1463-9084
000890254 0247_ $$2Handle$$a2128/27119
000890254 0247_ $$2altmetric$$aaltmetric:86839540
000890254 0247_ $$2pmid$$a32808947
000890254 0247_ $$2WOS$$aWOS:000567772700032
000890254 037__ $$aFZJ-2021-00838
000890254 082__ $$a540
000890254 1001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b0$$eCorresponding author
000890254 245__ $$aPEM fuel cell distribution of relaxation times: a method for the calculation and behavior of an oxygen transport peak
000890254 260__ $$aCambridge$$bRSC Publ.$$c2020
000890254 3367_ $$2DRIVER$$aarticle
000890254 3367_ $$2DataCite$$aOutput Types/Journal article
000890254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612536011_9439
000890254 3367_ $$2BibTeX$$aARTICLE
000890254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890254 3367_ $$00$$2EndNote$$aJournal Article
000890254 520__ $$aA simple numerical method for the calculation of the distribution of relaxation times (DRT) for PEM fuel cell impedance is developed. The method combines the Tikhonov regularization technique and projected gradient iterations. The method is illustrated by calculating DRT for the synthetic impedance of two parallel RC-circuits and for Warburg finite-length impedance. Finally, cathode catalyst layer (CCL) impedance is calculated using the exact analytical solution and the method discussed is applied to understand the behavior of the DRT peak due to oxygen transport in the CCL. The position of the oxygen transport peak on the frequency scale exhibits non-monotonic behavior as the oxygen diffusion coefficient in the CCL decreases, which may serve as an indicator of CCL flooding. The Python code for DRT calculation is available for download.
000890254 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000890254 588__ $$aDataset connected to CrossRef
000890254 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D0CP02094J$$gVol. 22, no. 34, p. 19131 - 19138$$n34$$p19131 - 19138$$tPhysical chemistry, chemical physics$$v22$$x1463-9084$$y2020
000890254 8564_ $$uhttps://juser.fz-juelich.de/record/890254/files/d0cp02094j.pdf$$yRestricted
000890254 8564_ $$uhttps://juser.fz-juelich.de/record/890254/files/Kulikovsky_Andrei_Accepted%20Manuscript.pdf$$yPublished on 2020-07-30. Available in OpenAccess from 2021-07-30.
000890254 909CO $$ooai:juser.fz-juelich.de:890254$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b0$$kFZJ
000890254 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000890254 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000890254 9141_ $$y2021
000890254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2018$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-09-04$$wger
000890254 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-04$$wger
000890254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000890254 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-04$$wger
000890254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000890254 920__ $$lyes
000890254 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000890254 9801_ $$aFullTexts
000890254 980__ $$ajournal
000890254 980__ $$aVDB
000890254 980__ $$aUNRESTRICTED
000890254 980__ $$aI:(DE-Juel1)IEK-14-20191129
000890254 981__ $$aI:(DE-Juel1)IET-4-20191129