| Home > Publications database > Robust Principal Component Analysis‐based Prediction of Protein‐Protein Interaction Hot spots ( RBHS ) > print |
| 001 | 890265 | ||
| 005 | 20240625095126.0 | ||
| 024 | 7 | _ | |a 10.1002/prot.26047 |2 doi |
| 024 | 7 | _ | |a 0887-3585 |2 ISSN |
| 024 | 7 | _ | |a 1097-0134 |2 ISSN |
| 024 | 7 | _ | |a 2128/28740 |2 Handle |
| 024 | 7 | _ | |a altmetric:98014578 |2 altmetric |
| 024 | 7 | _ | |a 33458895 |2 pmid |
| 024 | 7 | _ | |a WOS:000613869900001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-00849 |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Sitani, Divya |0 P:(DE-Juel1)173773 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a Robust Principal Component Analysis‐based Prediction of Protein‐Protein Interaction Hot spots ( RBHS ) |
| 260 | _ | _ | |a New York, NY |c 2021 |b Wiley-Liss |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1633605740_28015 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Proteins often exert their function by binding to other cellular partners. The hot spots are key residues for protein-protein binding. Their identification may shed light on the impact of disease associated mutations on protein complexes and help design protein-protein interaction inhibitors for therapy. Unfortunately, current machine learning methods to predict hot spots, suffer from limitations caused by gross errors in the data matrices. Here, we present a novel data pre-processing pipeline that overcomes this problem by recovering a low rank matrix with reduced noise using Robust Principal Component Analysis. Application to existing databases shows the predictive power of the method. |
| 536 | _ | _ | |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |0 G:(DE-HGF)POF4-525 |c POF4-525 |f POF IV |x 0 |
| 536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Giorgetti, Alejandro |0 P:(DE-Juel1)165199 |b 1 |u fzj |
| 700 | 1 | _ | |a Alfonso‐Prieto, Mercedes |0 P:(DE-Juel1)169976 |b 2 |
| 700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 3 |e Corresponding author |
| 773 | _ | _ | |a 10.1002/prot.26047 |g p. prot.26047 |0 PERI:(DE-600)1475032-6 |n 6 |p 639-647 |t Proteins |v 89 |y 2021 |x 1097-0134 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/890265/files/prot.26047.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:890265 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173773 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165199 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169976 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)145614 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 1 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Theory, modelling and simulation |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-09-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-09-08 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PROTEINS : 2018 |d 2020-09-08 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-09-08 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-09-08 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-08 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-08 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-08 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-09-08 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-08 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|