001     890272
005     20230111074310.0
024 7 _ |a 10.1039/D0TC03152F
|2 doi
024 7 _ |a 2050-7526
|2 ISSN
024 7 _ |a 2050-7534
|2 ISSN
024 7 _ |a 2128/27073
|2 Handle
024 7 _ |a altmetric:91447462
|2 altmetric
024 7 _ |a WOS:000590410200029
|2 WOS
037 _ _ |a FZJ-2021-00853
082 _ _ |a 530
100 1 _ |a Li, Luying
|0 0000-0003-4741-6882
|b 0
|e Corresponding author
245 _ _ |a Atomic scale study of the oxygen annealing effect on piezoelectricity enhancement of (K,Na)NbO 3 nanorods
260 _ _ |a London ˜[u.a.]œ
|c 2020
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611741038_11439
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With the increasing requirement of developing non-toxic piezoelectric materials, an alkaline niobate-based perovskite solid (K,Na)NbO3 (KNN) has been intensively studied. Promising piezoelectric properties are reported, which are mostly achieved by adding other elements, or simply varying the K/Na ratio. It is found that KNN nanorods grown on conductive Nb-doped SrTiO3 (STO) substrates show enhanced piezoelectric properties after annealing at 800 °C for 12 h [Y. He, Z. Wang, W. Jin, X. Hu, L. Li, Y. Gao, X. Zhang, H. Gu and X. Wang, Appl. Phys. Lett., 2017, 110, 212904]. However, the underlying mechanism for property enhancement at the atomic scale is not clearly revealed. In this study, comprehensive transmission electron microscopy techniques are utilized focusing on the atomic scale study of the interfacial composition, structures, strain, dipolar displacement vectors and their variations along the interface normal of the as-grown and annealed KNN nanorods. The results indicate phase transformation during annealing, and a larger spontaneous polarization within each unit cell of the annealed KNN nanorods, which lead to an overall enhancement of the piezoelectric properties. These results would be very beneficial for advanced nanogenerators and sensors with enhanced piezoelectric properties.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hu, Xiaokang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 2
700 1 _ |a He, Yahua
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jia, Shuangfeng
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sheng, Huaping
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Cheng, Yongfa
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Li
|0 P:(DE-Juel1)165794
|b 7
700 1 _ |a Wang, Zhao
|b 8
700 1 _ |a Gu, Haoshuang
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zhu, Yinlian
|0 0000-0002-0356-3306
|b 10
700 1 _ |a Wang, Jianbo
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gao, Yihua
|0 0000-0003-1905-9531
|b 12
773 _ _ |a 10.1039/D0TC03152F
|g Vol. 8, no. 44, p. 15830 - 15838
|0 PERI:(DE-600)2702245-6
|n 44
|p 15830 - 15838
|t Journal of materials chemistry / C
|v 8
|y 2020
|x 2050-7534
856 4 _ |u https://juser.fz-juelich.de/record/890272/files/d0tc03152f.pdf
|y Restricted
856 4 _ |y Published on 2020-09-30. Available in OpenAccess from 2021-09-30.
|u https://juser.fz-juelich.de/record/890272/files/Lei%20Jin%20preprint.pdf
909 C O |o oai:juser.fz-juelich.de:890272
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145711
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-06
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM C : 2018
|d 2020-09-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM C : 2018
|d 2020-09-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-06
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-06
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-06
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21