000890273 001__ 890273
000890273 005__ 20211105141528.0
000890273 0247_ $$2doi$$a10.1016/j.tsf.2021.138546
000890273 0247_ $$2ISSN$$a0040-6090
000890273 0247_ $$2ISSN$$a1879-2731
000890273 0247_ $$2Handle$$a2128/27074
000890273 0247_ $$2WOS$$aWOS:000621728300003
000890273 037__ $$aFZJ-2021-00854
000890273 041__ $$aEnglish
000890273 082__ $$a660
000890273 1001_ $$0P:(DE-HGF)0$$aYin, Jing-Wei$$b0
000890273 245__ $$aGrowth and characterization of pyrochlore-type (Ca,Ti)2(Nb,Ti)2O7 thin films
000890273 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000890273 3367_ $$2DRIVER$$aarticle
000890273 3367_ $$2DataCite$$aOutput Types/Journal article
000890273 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636031404_14075
000890273 3367_ $$2BibTeX$$aARTICLE
000890273 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890273 3367_ $$00$$2EndNote$$aJournal Article
000890273 520__ $$aPyrochlore-type (Ca,Ti)2(Nb,Ti)2O7 thin films have been grown on single-crystalline LaAlO3 and yttria-stabilized zirconia substrates by a magnetron sputtering system. Atomic-scale interface structure and growth mode of the (Ca,Ti)2(Nb,Ti)2O7 films on the substrates with different crystal structures have been investigated by advanced electron microscopy techniques. In both heterosystems, the film/substrate orientation relationship of [100](001)film//[100](001)substrate has been determined. In the heterosystem of (Ca,Ti)2(Nb,Ti)2O7/yttria-stabilized zirconia, the films directly grow on the substrates. In contrast, in the (Ca,Ti)2(Nb,Ti)2O7/LaAlO3 heterosystem, a perovskite-type Ca1-□(Ti,Nb)O3 interlayer with a few unit cells in thickness forms at the interface and interfacial reconstruction occurs at the (Ca,Ti)2(Nb,Ti)2O7/Ca1-□(Ti,Nb)O3 interface. Our findings indicate that the formation of the interlayer and the (Ca,Ti)2(Nb,Ti)2O7/Ca1-□(Ti,Nb)O3 interface reconstruction can accommodate the film/substrate dissimilarities in the crystal structures and facilitate the growth of single-crystalline pyrochlore-type films on the perovskite-type substrates.
000890273 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000890273 588__ $$aDataset connected to CrossRef
000890273 7001_ $$0P:(DE-Juel1)171617$$aWang, Yan$$b1
000890273 7001_ $$0P:(DE-HGF)0$$aChen, Yue-Hua$$b2
000890273 7001_ $$0P:(DE-HGF)0$$aWu, Sheng-Qiang$$b3
000890273 7001_ $$0P:(DE-HGF)0$$aCheng, Shao-Dong$$b4
000890273 7001_ $$0P:(DE-HGF)0$$aMi, Shao-Bo$$b5
000890273 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b6
000890273 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b7$$eCorresponding author
000890273 7001_ $$0P:(DE-Juel1)184889$$aWang, Hong$$b8
000890273 773__ $$0PERI:(DE-600)1482896-0$$a10.1016/j.tsf.2021.138546$$gVol. 721, p. 138546 -$$p138546 -$$tThin solid films$$v721$$x0040-6090$$y2021
000890273 8564_ $$uhttps://juser.fz-juelich.de/record/890273/files/Lei%20Jin_Thin%20Solid%20Films.pdf$$yPublished on 2021-01-16. Available in OpenAccess from 2023-01-16.
000890273 909CO $$ooai:juser.fz-juelich.de:890273$$pdriver$$pVDB$$pdnbdelivery$$popen_access$$popenaire
000890273 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b7$$kFZJ
000890273 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184889$$aForschungszentrum Jülich$$b8$$kFZJ
000890273 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000890273 9141_ $$y2021
000890273 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-18
000890273 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890273 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890273 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTHIN SOLID FILMS : 2018$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-18
000890273 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-18$$wger
000890273 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-18
000890273 920__ $$lyes
000890273 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000890273 980__ $$ajournal
000890273 980__ $$aVDB
000890273 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000890273 980__ $$aUNRESTRICTED
000890273 9801_ $$aFullTexts