000890281 001__ 890281
000890281 005__ 20210628150953.0
000890281 0247_ $$2doi$$a10.2967/jnumed.120.248278
000890281 0247_ $$2ISSN$$a0022-3123
000890281 0247_ $$2ISSN$$a0097-9058
000890281 0247_ $$2ISSN$$a0161-5505
000890281 0247_ $$2ISSN$$a1535-5667
000890281 0247_ $$2ISSN$$a2159-662X
000890281 0247_ $$2Handle$$a2128/27586
000890281 0247_ $$2altmetric$$aaltmetric:89585646
000890281 0247_ $$2pmid$$a32887757
000890281 0247_ $$2WOS$$aWOS:000658416500008
000890281 037__ $$aFZJ-2021-00862
000890281 041__ $$aEnglish
000890281 082__ $$a610
000890281 1001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b0$$eCorresponding author$$ufzj
000890281 245__ $$aTreatment Monitoring of Immunotherapy and Targeted Therapy using 18 F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences
000890281 260__ $$aNew York, NY$$bSoc.$$c2021
000890281 3367_ $$2DRIVER$$aarticle
000890281 3367_ $$2DataCite$$aOutput Types/Journal article
000890281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618298138_12586
000890281 3367_ $$2BibTeX$$aARTICLE
000890281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890281 3367_ $$00$$2EndNote$$aJournal Article
000890281 520__ $$aWe investigated the value of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET for treatment monitoring of immune checkpoint inhibition (ICI) or targeted therapy (TT) alone or in combination with radiotherapy in patients with brain metastasis (BM) since contrast-enhanced MRI often remains inconclusive. Methods: We retrospectively identified 40 patients with 107 BMs secondary to melanoma (n = 29 with 75 BMs) or non–small cell lung cancer (n = 11 with 32 BMs) treated with ICI or TT who had 18F-FET PET (n = 60 scans) for treatment monitoring from 2015 to 2019. Most patients (n = 37; 92.5%) had radiotherapy during the course of the disease. In 27 patients, 18F-FET PET was used to differentiate treatment-related changes from BM relapse after ICI or TT. In 13 patients, 18F-FET PET was performed for response assessment to ICI or TT using baseline and follow-up scans (median time between scans, 4.2 mo). In all lesions, static and dynamic 18F-FET PET parameters were obtained (i.e., mean tumor-to-brain ratios [TBR], time-to-peak values). Diagnostic accuracies of PET parameters were evaluated by receiver-operating-characteristic analyses using the clinical follow-up or neuropathologic findings as a reference. Results: A TBR threshold of 1.95 differentiated BM relapse from treatment-related changes with an accuracy of 85% (P = 0.003). Metabolic responders to ICI or TT on 18F-FET PET had a significantly longer stable follow-up (threshold of TBR reduction relative to baseline, ≥10%; accuracy, 82%; P = 0.004). Furthermore, at follow-up, time to peak in metabolic responders increased significantly (P = 0.019). Conclusion: 18F-FET PET may add valuable information for treatment monitoring in BM patients treated with ICI or TT.
000890281 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000890281 588__ $$aDataset connected to CrossRef
000890281 7001_ $$0P:(DE-HGF)0$$aAbdulla, Diana SY$$b1
000890281 7001_ $$0P:(DE-HGF)0$$aScheffler, Matthias$$b2
000890281 7001_ $$0P:(DE-HGF)0$$aWolpert, Fabian$$b3
000890281 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b4
000890281 7001_ $$0P:(DE-HGF)0$$aHuellner, Martin W$$b5
000890281 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b6$$ufzj
000890281 7001_ $$0P:(DE-HGF)0$$aSchweinsberg, Viola$$b7
000890281 7001_ $$0P:(DE-HGF)0$$aSchlaak, Max$$b8
000890281 7001_ $$0P:(DE-HGF)0$$aKreuzberg, Nicole$$b9
000890281 7001_ $$0P:(DE-HGF)0$$aLandsberg, Jennifer$$b10
000890281 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b11$$ufzj
000890281 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b12
000890281 7001_ $$0P:(DE-HGF)0$$aBaues, Christian$$b13
000890281 7001_ $$0P:(DE-HGF)0$$aTrommer, Maike$$b14
000890281 7001_ $$0P:(DE-HGF)0$$aCelik, Eren$$b15
000890281 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I$$b16
000890281 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b17$$ufzj
000890281 7001_ $$0P:(DE-HGF)0$$aMarnitz, Simone$$b18
000890281 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b19$$ufzj
000890281 7001_ $$0P:(DE-HGF)0$$aTonn, Joerg-Christian$$b20
000890281 7001_ $$0P:(DE-HGF)0$$aWeller, Michael$$b21
000890281 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b22$$ufzj
000890281 7001_ $$0P:(DE-HGF)0$$aWolf, Jürgen$$b23
000890281 7001_ $$0P:(DE-HGF)0$$aMauch, Cornelia$$b24
000890281 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.120.248278$$gp. jnumed.120.248278 -$$n4$$p464-470$$tJournal of nuclear medicine$$v62$$x2159-662X$$y2021
000890281 8564_ $$uhttps://juser.fz-juelich.de/record/890281/files/Galldiks_2020_Post%20Print_JNUMED_Treatment%20monitoring%20of%20immunotherapy%20and%20targeted%20therapy.pdf$$yOpenAccess
000890281 909CO $$ooai:juser.fz-juelich.de:890281$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b0$$kFZJ
000890281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b6$$kFZJ
000890281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b11$$kFZJ
000890281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b17$$kFZJ
000890281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b19$$kFZJ
000890281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b22$$kFZJ
000890281 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000890281 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890281 9141_ $$y2021
000890281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890281 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2018$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2018$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-31
000890281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-31
000890281 920__ $$lyes
000890281 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000890281 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000890281 980__ $$ajournal
000890281 980__ $$aVDB
000890281 980__ $$aUNRESTRICTED
000890281 980__ $$aI:(DE-Juel1)INM-3-20090406
000890281 980__ $$aI:(DE-Juel1)INM-4-20090406
000890281 9801_ $$aFullTexts