001     890281
005     20210628150953.0
024 7 _ |a 10.2967/jnumed.120.248278
|2 doi
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
024 7 _ |a 2128/27586
|2 Handle
024 7 _ |a altmetric:89585646
|2 altmetric
024 7 _ |a 32887757
|2 pmid
024 7 _ |a WOS:000658416500008
|2 WOS
037 _ _ |a FZJ-2021-00862
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Treatment Monitoring of Immunotherapy and Targeted Therapy using 18 F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences
260 _ _ |a New York, NY
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618298138_12586
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigated the value of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET for treatment monitoring of immune checkpoint inhibition (ICI) or targeted therapy (TT) alone or in combination with radiotherapy in patients with brain metastasis (BM) since contrast-enhanced MRI often remains inconclusive. Methods: We retrospectively identified 40 patients with 107 BMs secondary to melanoma (n = 29 with 75 BMs) or non–small cell lung cancer (n = 11 with 32 BMs) treated with ICI or TT who had 18F-FET PET (n = 60 scans) for treatment monitoring from 2015 to 2019. Most patients (n = 37; 92.5%) had radiotherapy during the course of the disease. In 27 patients, 18F-FET PET was used to differentiate treatment-related changes from BM relapse after ICI or TT. In 13 patients, 18F-FET PET was performed for response assessment to ICI or TT using baseline and follow-up scans (median time between scans, 4.2 mo). In all lesions, static and dynamic 18F-FET PET parameters were obtained (i.e., mean tumor-to-brain ratios [TBR], time-to-peak values). Diagnostic accuracies of PET parameters were evaluated by receiver-operating-characteristic analyses using the clinical follow-up or neuropathologic findings as a reference. Results: A TBR threshold of 1.95 differentiated BM relapse from treatment-related changes with an accuracy of 85% (P = 0.003). Metabolic responders to ICI or TT on 18F-FET PET had a significantly longer stable follow-up (threshold of TBR reduction relative to baseline, ≥10%; accuracy, 82%; P = 0.004). Furthermore, at follow-up, time to peak in metabolic responders increased significantly (P = 0.019). Conclusion: 18F-FET PET may add valuable information for treatment monitoring in BM patients treated with ICI or TT.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Abdulla, Diana SY
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Scheffler, Matthias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wolpert, Fabian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Huellner, Martin W
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 6
|u fzj
700 1 _ |a Schweinsberg, Viola
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schlaak, Max
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kreuzberg, Nicole
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Landsberg, Jennifer
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 11
|u fzj
700 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Baues, Christian
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Trommer, Maike
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Celik, Eren
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Ruge, Maximilian I
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 17
|u fzj
700 1 _ |a Marnitz, Simone
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 19
|u fzj
700 1 _ |a Tonn, Joerg-Christian
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Weller, Michael
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 22
|u fzj
700 1 _ |a Wolf, Jürgen
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Mauch, Cornelia
|0 P:(DE-HGF)0
|b 24
773 _ _ |a 10.2967/jnumed.120.248278
|g p. jnumed.120.248278 -
|0 PERI:(DE-600)2040222-3
|n 4
|p 464-470
|t Journal of nuclear medicine
|v 62
|y 2021
|x 2159-662X
856 4 _ |u https://juser.fz-juelich.de/record/890281/files/Galldiks_2020_Post%20Print_JNUMED_Treatment%20monitoring%20of%20immunotherapy%20and%20targeted%20therapy.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890281
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)131777
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2018
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21