001     890299
005     20240712113250.0
024 7 _ |a 10.1149/09809.0305ecst
|2 doi
024 7 _ |a 1938-5862
|2 ISSN
024 7 _ |a 1938-6737
|2 ISSN
024 7 _ |a 2151-2051
|2 ISSN
024 7 _ |a 2128/27608
|2 Handle
037 _ _ |a FZJ-2021-00879
082 _ _ |a 540
100 1 _ |a Beale, Steven B.
|0 P:(DE-Juel1)157835
|b 0
|e Corresponding author
245 _ _ |a Combined Two-phase Co-flow and Counter-flow in a Gas Channel/Porous Transport Layer Assembly
260 _ _ |a Pennington, NJ
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630414733_7261
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper considers a detailed numerical analysis of combined liquid-gas co-flow in a gas channel, with liquid-gas counter-flow in a porous transport layer, as is typically found on the cathode side of a polymer electrolyte fuel cell. The geometry is obtained by digital reconstruction of nano-computer tomography images. From this, the domain is tessellated with an unstructured castellated or octree mesh, upon which the equations of mass and momentum are solved by means of a volume of fluid method. Liquid water is produced from an electrode where gaseous oxygen is simultaneously consumed by electrochemical reduction; Liquid-gas counter flow in the porous transport layer results in liquid drops being entrained in co-flow in the gas channels and convected by the gas downstream.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a Flexible Simulation of Fuel Cells with OpenFOAM (jara0070_20191101)
|0 G:(DE-Juel1)jara0070_20191101
|c jara0070_20191101
|f Flexible Simulation of Fuel Cells with OpenFOAM
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Andersson, Martin
|0 P:(DE-Juel1)168242
|b 1
700 1 _ |a Weber, Norbert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Marschall, Holger
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
773 _ _ |a 10.1149/09809.0305ecst
|g Vol. 98, no. 9, p. 305 - 315
|0 PERI:(DE-600)2251888-5
|n 9
|p 305 - 315
|t ECS transactions
|v 98
|y 2020
|x 1938-6737
856 4 _ |u https://juser.fz-juelich.de/record/890299/files/Beale_2020_ECS_Trans._98_305.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/890299/files/Beale_Steven.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890299
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157835
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129883
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21