Home > Publications database > Conditioning nano-LEDs in arrays by laser-micro-annealing: The key to their performance improvement > print |
001 | 890300 | ||
005 | 20220930130305.0 | ||
024 | 7 | _ | |2 doi |a 10.1063/5.0038070 |
024 | 7 | _ | |2 ISSN |a 0003-6951 |
024 | 7 | _ | |2 ISSN |a 1077-3118 |
024 | 7 | _ | |2 ISSN |a 1520-8842 |
024 | 7 | _ | |2 Handle |a 2128/27102 |
024 | 7 | _ | |2 WOS |a WOS:000630480400001 |
037 | _ | _ | |a FZJ-2021-00880 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-Juel1)128613 |a Mikulics, M. |b 0 |e Corresponding author |
245 | _ | _ | |a Conditioning nano-LEDs in arrays by laser-micro-annealing: The key to their performance improvement |
260 | _ | _ | |a Melville, NY |b American Inst. of Physics |c 2021 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1636623717_22141 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a A local so-called laser-micro-annealing (LMA) conditioning technology, which is suitable for the fabrication of a large range of hybrid nano-optoelectronic devices, was applied to III-nitride-based nano-light emitting diodes (LEDs). The LEDs with a diameter of ∼100 nm were fabricated in large area arrays and designed for hybrid optoelectronic applications. The LMA process was developed for the precise local conditioning of LED nano-structures. Photoluminescence measurements reveal the enhancement of nano-LED properties, which is in very good agreement with a simple model introduced based on the reduction of the defect layer depth by the LMA process. The experimental data confirm the reduction of the defect layer depth from ∼17 nm to ∼5 nm determined. In consequence, an increase in work currents up to 40 nA at 5 V bias after the LMA procedure as well as high electroluminescence (EL) and output optical power up to 150 nW in the ∼440–445 nm emission wavelength range corresponding to ∼75% wall-plug efficiency were achieved. Additionally, the LEDs' electroluminescence intensities reach the desired values by conditioning the contact/annealed regions of individual LEDs accordingly. Furthermore, the LMA process affects the long-term stability of the electroluminescence (EL) intensity of single nano-LED devices. A study of the EL during 5000 h in the continuous wave operation testing mode revealed a moderate ∼15% decrease in the intensity in comparison to ∼50% for their non-LMA counterparts. Finally, Raman measurements indicate that the “work” temperature for nano-LED conditioned structures decreases. |
536 | _ | _ | |0 G:(DE-HGF)POF4-535 |a 535 - Materials Information Discovery (POF4-535) |c POF4-535 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Kordoš, P. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Gregušová, D. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Sofer, Z. |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Winden, A. |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)128856 |a Trellenkamp, Stefan |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)128616 |a Moers, Jürgen |b 6 |
700 | 1 | _ | |0 P:(DE-Juel1)130824 |a Mayer, Joachim |b 7 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)125593 |a Hardtdegen, H. |b 8 |e Corresponding author |
773 | _ | _ | |0 PERI:(DE-600)1469436-0 |a 10.1063/5.0038070 |g Vol. 118, no. 4, p. 043101 - |n 4 |p 043101 - |t Applied physics letters |v 118 |x 1077-3118 |y 2021 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/890300/files/5.0038070.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:890300 |p openaire |p open_access |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128613 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a External Institute |b 1 |k Extern |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-HGF)0 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a External Institute |b 3 |k Extern |
910 | 1 | _ | |0 I:(DE-HGF)0 |6 P:(DE-HGF)0 |a External Institute |b 4 |k Extern |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128856 |a Forschungszentrum Jülich |b 5 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)128616 |a Forschungszentrum Jülich |b 6 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130824 |a Forschungszentrum Jülich |b 7 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)125593 |a Forschungszentrum Jülich |b 8 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-535 |1 G:(DE-HGF)POF4-530 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |a DE-HGF |b Key Technologies |l Materials Systems Engineering |v Materials Information Discovery |x 0 |
913 | 0 | _ | |0 G:(DE-HGF)POF3-143 |1 G:(DE-HGF)POF3-140 |2 G:(DE-HGF)POF3-100 |3 G:(DE-HGF)POF3 |4 G:(DE-HGF)POF |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |v Controlling Configuration-Based Phenomena |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)1230 |2 StatID |a DBCoverage |b Current Contents - Electronics and Telecommunications Collection |d 2020-09-04 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b APPL PHYS LETT : 2018 |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0430 |2 StatID |a National-Konsortium |d 2020-09-04 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0320 |2 StatID |a DBCoverage |b PubMed Central |d 2020-09-04 |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2020-09-04 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2020-09-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|