000890310 001__ 890310 000890310 005__ 20230522110533.0 000890310 0247_ $$2doi$$a10.1093/noajnl/vdaa118 000890310 0247_ $$2Handle$$a2128/27088 000890310 0247_ $$2altmetric$$aaltmetric:99211386 000890310 0247_ $$2pmid$$a33521637 000890310 0247_ $$2WOS$$aWOS:000897684800003 000890310 037__ $$aFZJ-2021-00883 000890310 082__ $$a610 000890310 1001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b0$$eCorresponding author 000890310 245__ $$aFeature-based PET/MRI radiomics in patients with brain tumors 000890310 260__ $$aOxford$$bOxford University Press868239$$c2020 000890310 3367_ $$2DRIVER$$aarticle 000890310 3367_ $$2DataCite$$aOutput Types/Journal article 000890310 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611915068_10421 000890310 3367_ $$2BibTeX$$aARTICLE 000890310 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000890310 3367_ $$00$$2EndNote$$aJournal Article 000890310 520__ $$aRadiomics allows the extraction of quantitative features from medical images such as CT, MRI, or PET, thereby providing additional, potentially relevant diagnostic information for clinical decision-making. Because the computation of these features is performed highly automated on medical images acquired during routine follow-up, radiomics offers this information at low cost. Further, the radiomics features can be used alone or combined with other clinical or histomolecular parameters to generate predictive or prognostic mathematical models. These models can then be applied for various important diagnostic indications in neuro-oncology, for example, to noninvasively predict relevant biomarkers in glioma patients, to differentiate between treatment-related changes and local brain tumor relapse, or to predict treatment response. In recent years, amino acid PET has become an important diagnostic tool in patients with brain tumors. Therefore, the number of studies in patients with brain tumors investigating the potential of PET radiomics or combined PET/MRI radiomics is steadily increasing. This review summarizes current research regarding feature-based PET as well as combined PET/MRI radiomics in neuro-oncology. 000890310 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000890310 536__ $$0G:(GEPRIS)428090865$$aDFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie $$c428090865$$x1 000890310 588__ $$aDataset connected to CrossRef 000890310 7001_ $$0P:(DE-HGF)0$$aMeißner, Anna-Katharina$$b1 000890310 7001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b2$$ufzj 000890310 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K$$b3 000890310 7001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b4 000890310 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R$$b5$$ufzj 000890310 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J$$b6$$ufzj 000890310 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b7$$ufzj 000890310 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b8$$ufzj 000890310 773__ $$0PERI:(DE-600)3009682-0$$a10.1093/noajnl/vdaa118$$gVol. 2, no. Supplement_4, p. iv15 - iv21$$nSupplement_4$$piv15 - iv21$$tNeuro-oncology advances$$v2$$x2632-2498$$y2020 000890310 8564_ $$uhttps://juser.fz-juelich.de/record/890310/files/vdaa118.pdf$$yOpenAccess 000890310 8767_ $$92020-09-10$$d2021-02-17$$eAPC$$jBestellt$$lDeposit: OUP$$zFZJ-2020-03107, Gold OA 000890310 909CO $$ooai:juser.fz-juelich.de:890310$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000890310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ 000890310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b2$$kFZJ 000890310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ 000890310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ 000890310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ 000890310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b8$$kFZJ 000890310 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000890310 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000890310 9141_ $$y2021 000890310 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000890310 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05 000890310 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05 000890310 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000890310 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-05 000890310 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05 000890310 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05 000890310 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-05 000890310 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05 000890310 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000890310 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1 000890310 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2 000890310 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x3 000890310 9801_ $$aFullTexts 000890310 980__ $$ajournal 000890310 980__ $$aVDB 000890310 980__ $$aUNRESTRICTED 000890310 980__ $$aI:(DE-Juel1)INM-4-20090406 000890310 980__ $$aI:(DE-Juel1)INM-3-20090406 000890310 980__ $$aI:(DE-Juel1)INM-11-20170113 000890310 980__ $$aI:(DE-Juel1)VDB1046 000890310 980__ $$aAPC