001     890310
005     20230522110533.0
024 7 _ |a 10.1093/noajnl/vdaa118
|2 doi
024 7 _ |a 2128/27088
|2 Handle
024 7 _ |a altmetric:99211386
|2 altmetric
024 7 _ |a 33521637
|2 pmid
024 7 _ |a WOS:000897684800003
|2 WOS
037 _ _ |a FZJ-2021-00883
082 _ _ |a 610
100 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 0
|e Corresponding author
245 _ _ |a Feature-based PET/MRI radiomics in patients with brain tumors
260 _ _ |a Oxford
|c 2020
|b Oxford University Press868239
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611915068_10421
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Radiomics allows the extraction of quantitative features from medical images such as CT, MRI, or PET, thereby providing additional, potentially relevant diagnostic information for clinical decision-making. Because the computation of these features is performed highly automated on medical images acquired during routine follow-up, radiomics offers this information at low cost. Further, the radiomics features can be used alone or combined with other clinical or histomolecular parameters to generate predictive or prognostic mathematical models. These models can then be applied for various important diagnostic indications in neuro-oncology, for example, to noninvasively predict relevant biomarkers in glioma patients, to differentiate between treatment-related changes and local brain tumor relapse, or to predict treatment response. In recent years, amino acid PET has become an important diagnostic tool in patients with brain tumors. Therefore, the number of studies in patients with brain tumors investigating the potential of PET radiomics or combined PET/MRI radiomics is steadily increasing. This review summarizes current research regarding feature-based PET as well as combined PET/MRI radiomics in neuro-oncology.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|x 0
|f POF III
536 _ _ |a DFG project 428090865 - Radiomics basierend auf MRT und Aminosäure PET in der Neuroonkologie
|0 G:(GEPRIS)428090865
|c 428090865
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meißner, Anna-Katharina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kocher, Martin
|0 P:(DE-Juel1)173675
|b 2
|u fzj
700 1 _ |a Bauer, Elena K
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Werner, Jan-Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 5
|u fzj
700 1 _ |a Shah, Nadim J
|0 P:(DE-Juel1)131794
|b 6
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 7
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 8
|u fzj
773 _ _ |a 10.1093/noajnl/vdaa118
|g Vol. 2, no. Supplement_4, p. iv15 - iv21
|0 PERI:(DE-600)3009682-0
|n Supplement_4
|p iv15 - iv21
|t Neuro-oncology advances
|v 2
|y 2020
|x 2632-2498
856 4 _ |u https://juser.fz-juelich.de/record/890310/files/vdaa118.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890310
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)143792
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-09-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21