001     890328
005     20230522110537.0
024 7 _ |a 10.1103/PhysRevB.103.035430
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/27095
|2 Handle
024 7 _ |a WOS:000612137100003
|2 WOS
024 7 _ |a altmetric:90095156
|2 altmetric
037 _ _ |a FZJ-2021-00894
082 _ _ |a 530
100 1 _ |a González Rosado, L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Long-range exchange interaction between spin qubits mediated by a superconducting link at finite magnetic field
260 _ _ |a Woodbury, NY
|c 2021
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611935139_10321
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state spin qubits are promising candidates for the realization of a quantum computer due to their long coherence times and easy electrical manipulation. However, spin-spin interactions, which are needed for entangling gates, have only limited range as they generally rely on tunneling between neighboring quantum dots. This severely constrains scalability. Proposals to extend the interaction range generally focus on coherent electron transport between dots or on extending the coupling range. Here, we study a setup in which such an extension is obtained by using a superconductor as a quantum mediator. Because of its gap, the superconductor effectively acts as a long tunnel barrier. We analyze the impact of spin-orbit (SO) coupling, external magnetic fields, and the geometry of the superconductor. We show that while spin-nonconserving tunneling between the dots and the superconductor due to SO coupling does not affect the exchange interaction, strong SO scattering in the superconducting bulk is detrimental. Moreover, we find that the addition of an external magnetic field decreases the strength of the exchange interaction. Fortunately, the geometry of the superconducting link offers a lot of room to optimize the interaction range, with gains of over an order of magnitude from a two-dimensional (2D) film to a quasi-1D strip. We estimate that for superconductors with weak SO coupling (e.g., aluminum), exchange rates of up to 100 MHz over a micron-scale range can be achieved with this setup in the presence of magnetic fields of the order of 100 mT.
536 _ _ |a 522 - Quantum Computing (POF4-522)
|0 G:(DE-HGF)POF4-522
|c POF4-522
|f POF IV
|x 0
536 _ _ |a DFG project 387689860 - Langreichweitige Kopplung von Spin Quantenbits in Supraleiter-Halbleiter Heterostukturen
|0 G:(GEPRIS)387689860
|c 387689860
|x 1
542 _ _ |i 2021-01-26
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hassler, F.
|0 0000-0002-8903-3903
|b 1
700 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 2
|e Corresponding author
773 1 8 |a 10.1103/physrevb.103.035430
|b American Physical Society (APS)
|d 2021-01-26
|n 3
|p 035430
|3 journal-article
|2 Crossref
|t Physical Review B
|v 103
|y 2021
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.103.035430
|g Vol. 103, no. 3, p. 035430
|0 PERI:(DE-600)2844160-6
|n 3
|p 035430
|t Physical review / B
|v 103
|y 2021
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/890328/files/PhysRevB.103.035430.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:890328
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151130
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts
999 C 5 |a 10.1038/s41586-019-1666-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1231930
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.7.041061
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41557-019-0232-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.57.120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-conmatphys-030212-184248
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41534-017-0038-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature10444
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-019-12514-w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2015.291
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-017-13308-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep07551
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.aar3960
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2016.188
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.2.011006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.245422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.93.075301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.115407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.aal2469
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.060501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.8.041018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3762/bjnano.10.36
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.235401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1412230111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.117701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1217692
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00018737300101369
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.104515
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.108.1175
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.101.174202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.041301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9780511618833
|1 E. Akkermans
|2 Crossref
|9 -- missing cx lookup --
|y 2007
999 C 5 |a 10.1103/PhysRevB.88.075306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.116.136803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.146801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.094520
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.012504
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.165307
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.026804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-6596/456/1/012035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.125328
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2010.84
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41534-018-0075-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-019-13416-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. Abrikosov
|y 1975
|2 Crossref
|t Methods of Quantum Field Theory in Statistical Physics
|o A. Abrikosov Methods of Quantum Field Theory in Statistical Physics 1975
999 C 5 |a 10.1016/j.aop.2011.06.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep05438
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21