000890356 001__ 890356
000890356 005__ 20210623131757.0
000890356 0247_ $$2doi$$a10.1016/j.molliq.2020.114892
000890356 0247_ $$2ISSN$$a0167-7322
000890356 0247_ $$2ISSN$$a1873-3166
000890356 0247_ $$2Handle$$a2128/27133
000890356 0247_ $$2WOS$$aWOS:000610834000080
000890356 037__ $$aFZJ-2021-00901
000890356 082__ $$a540
000890356 1001_ $$0P:(DE-HGF)0$$aValero, Margarita$$b0$$eCorresponding author
000890356 245__ $$aSolubilisation of salicylate in F127 micelles: Effect of pH and temperature on morphology and interactions with cyclodextrin
000890356 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000890356 3367_ $$2DRIVER$$aarticle
000890356 3367_ $$2DataCite$$aOutput Types/Journal article
000890356 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612860552_17542
000890356 3367_ $$2BibTeX$$aARTICLE
000890356 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890356 3367_ $$00$$2EndNote$$aJournal Article
000890356 520__ $$aThe present work examines the behavior of salicylic acid (SAL)-loaded F127 micelles as drug nanocarriers for controlled release by means of interaction with 2,6-dimethyl-β-cyclodextrin (DIMEB) in the intestine at basic pH = 7–8, both important excipients, of pharmaceutical formulations.The results show that acidic pH (pH = 1) strongly increases the partitioning of SAL in F127 micelles compared to neutral pH, due to the drug being in its molecular form. Fluorescence spectroscopy and small-angle neutron scattering show that free and SAL-loaded F127 micelles transition to cylindrical micelles at pH = 1 and high temperatures (37 °C). Micelles loaded with SAL are disrupted by DIMEB to a higher extent than at pH = 7 at physiological temperature. This study reveals that F127 could be a valuable nanocarrier for intestine controlled release of SAL. Taken together, our results highlight the importance of water in the structure of the micelles and their interaction with DIMEB, and bring precious insights into the mechanisms that regulate drug loading and release in complex formulations.
000890356 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000890356 588__ $$aDataset connected to CrossRef
000890356 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000890356 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000890356 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000890356 7001_ $$0P:(DE-HGF)0$$aHu, Wenjing$$b1
000890356 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith$$b2
000890356 7001_ $$0P:(DE-HGF)0$$aDreiss, Cécile A.$$b3
000890356 773__ $$0PERI:(DE-600)1491496-7$$a10.1016/j.molliq.2020.114892$$gVol. 322, p. 114892 -$$p114892$$tJournal of molecular liquids$$v322$$x0167-7322$$y2021
000890356 8564_ $$uhttps://juser.fz-juelich.de/record/890356/files/SAL_pH_22_November_2020_MVJ.pdf$$yPublished on 2020-12-03. Available in OpenAccess from 2022-12-03.
000890356 909CO $$ooai:juser.fz-juelich.de:890356$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000890356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171614$$aForschungszentrum Jülich$$b2$$kFZJ
000890356 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000890356 9130_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000890356 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000890356 9141_ $$y2021
000890356 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-08
000890356 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000890356 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890356 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL LIQ : 2018$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000890356 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-08$$wger
000890356 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000890356 920__ $$lyes
000890356 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000890356 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000890356 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000890356 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
000890356 980__ $$ajournal
000890356 980__ $$aVDB
000890356 980__ $$aUNRESTRICTED
000890356 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000890356 980__ $$aI:(DE-588b)4597118-3
000890356 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000890356 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000890356 9801_ $$aFullTexts