000890360 001__ 890360
000890360 005__ 20220222143556.0
000890360 0247_ $$2doi$$a10.1021/acs.jpcb.0c09476
000890360 0247_ $$2ISSN$$a1089-5647
000890360 0247_ $$2ISSN$$a1520-5207
000890360 0247_ $$2ISSN$$a1520-6106
000890360 0247_ $$2Handle$$a2128/27137
000890360 0247_ $$2altmetric$$aaltmetric:98042919
000890360 0247_ $$2pmid$$a33470118
000890360 0247_ $$2WOS$$aWOS:000614308000009
000890360 037__ $$aFZJ-2021-00905
000890360 082__ $$a530
000890360 1001_ $$0P:(DE-Juel1)143799$$aFischer, Jennifer$$b0
000890360 245__ $$aStructure and Dynamics of Ribonuclease A during Thermal Unfolding: The Failure of the Zimm Model
000890360 260__ $$aWashington, DC$$bSoc.$$c2021
000890360 3367_ $$2DRIVER$$aarticle
000890360 3367_ $$2DataCite$$aOutput Types/Journal article
000890360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645452290_27838
000890360 3367_ $$2BibTeX$$aARTICLE
000890360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890360 3367_ $$00$$2EndNote$$aJournal Article
000890360 520__ $$aDisordered regions as found in intrinsically disordered proteins (IDP) or during protein folding define response time to stimuli and protein folding times. Neutron spin-echo spectroscopy is a powerful tool to directly access the collective motions of the unfolded chain to enlighten the physical origin of basic conformational relaxation. During the thermal unfolding of native ribonuclease A, we examine the structure and dynamics of the disordered state within a two-state transition model using polymer models, including internal friction, to describe the chain dynamics. The presence of four disulfide bonds alters the disordered configuration to a more compact configuration compared to a Gaussian chain that is defined by the additional links, as demonstrated by coarse-grained simulation. The dynamics of the disordered chain is described by Zimm dynamics with internal friction (ZIF) between neighboring amino acids. Relaxation times are dominated by mode-independent internal friction. Internal friction relaxation times show an Arrhenius-like behavior with an activation energy of 33 kJ/mol. The Zimm dynamics is dominated by internal friction and suggest that the characteristic motions correspond to overdamped elastic modes similar to the motions observed for folded proteins but within a pool of disordered configurations spanning the configurational space. For IDP, internal friction dominates while solvent friction and hydrodynamic interactions are smaller corrections.
000890360 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000890360 588__ $$aDataset connected to CrossRef
000890360 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000890360 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000890360 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000890360 693__ $$0EXP:(DE-H253)DORISIII(machine)-20150101$$1EXP:(DE-H253)DORISIII-20150101$$5EXP:(DE-H253)DORISIII(machine)-20150101$$aDORIS III$$eFacility (machine) DORIS III$$x1
000890360 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b1
000890360 7001_ $$0P:(DE-HGF)0$$aFalus, Peter$$b2
000890360 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b3$$ufzj
000890360 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b4$$eCorresponding author
000890360 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.0c09476$$gVol. 125, no. 3, p. 780 - 788$$n3$$p780 - 788$$tThe journal of physical chemistry <Washington, DC> / B$$v125$$x1520-5207$$y2021
000890360 8564_ $$uhttps://juser.fz-juelich.de/record/890360/files/acs.jpcb.0c09476.pdf$$yRestricted
000890360 8564_ $$uhttps://juser.fz-juelich.de/record/890360/files/radulescu_UnfoldedDynamics_Revision_accepted.pdf$$yPublished on 2021-01-20. Available in OpenAccess from 2022-01-20.
000890360 909CO $$ooai:juser.fz-juelich.de:890360$$popenaire$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access
000890360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b1$$kFZJ
000890360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b3$$kFZJ
000890360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b4$$kFZJ
000890360 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000890360 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000890360 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000890360 9130_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000890360 9141_ $$y2021
000890360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000890360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2018$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000890360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000890360 920__ $$lyes
000890360 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000890360 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000890360 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000890360 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000890360 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x4
000890360 980__ $$ajournal
000890360 980__ $$aVDB
000890360 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000890360 980__ $$aI:(DE-588b)4597118-3
000890360 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000890360 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000890360 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000890360 980__ $$aUNRESTRICTED
000890360 9801_ $$aFullTexts