000890362 001__ 890362
000890362 005__ 20240712112913.0
000890362 0247_ $$2doi$$a10.1007/s10458-020-09489-0
000890362 0247_ $$2ISSN$$a1387-2532
000890362 0247_ $$2ISSN$$a1573-7454
000890362 0247_ $$2Handle$$a2128/27640
000890362 0247_ $$2altmetric$$aaltmetric:104385237
000890362 0247_ $$2WOS$$aWOS:000611534100001
000890362 037__ $$aFZJ-2021-00907
000890362 041__ $$aEnglish
000890362 082__ $$a004
000890362 1001_ $$00000-0002-7146-3868$$aDähling, Stefan$$b0$$eCorresponding author
000890362 245__ $$aEnabling scalable and fault-tolerant multi-agent systems by utilizing cloud-native computing
000890362 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2021
000890362 3367_ $$2DRIVER$$aarticle
000890362 3367_ $$2DataCite$$aOutput Types/Journal article
000890362 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618832922_17985
000890362 3367_ $$2BibTeX$$aARTICLE
000890362 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000890362 3367_ $$00$$2EndNote$$aJournal Article
000890362 520__ $$aMulti-agent systems (MAS) represent a distributed computing paradigm well suited to tackle today’s challenges in the field of the Internet of Things (IoT). Both share many similarities such as the interconnection of distributed devices and their cooperation. The combination of MAS and IoT would allow the transfer of the experience gained in MAS research to the broader range of IoT applications. The key enabler for utilizing MAS in the IoT is the ability to build large-scale and fault-tolerant MASs since IoT concepts comprise possibly thousands or even millions of devices. However, well known multi-agent platforms (MAP), e. g., Java Agent DE-velopment Framework (JADE), are not able to deal with these challenges. To this aim, we present a cloud-native Multi-Agent Platform (cloneMAP) as a modern MAP based on cloud-computing techniques to enable scalability and fault-tolerance. A microservice architecture is used to implement it in a distributed way utilizing the open-source container orchestration system Kubernetes. Thereby, bottlenecks and single-points of failure are conceptually avoided. A comparison with JADE via relevant performance metrics indicates the massively improved scalability. Furthermore, the implementation of a large-scale use case verifies cloneMAP’s suitability for IoT applications. This leads to the conclusion that cloneMAP extends the range of possible MAS applications and enables the integration with IoT concepts.
000890362 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000890362 588__ $$aDataset connected to CrossRef
000890362 7001_ $$0P:(DE-Juel1)180368$$aRazik, Lukas$$b1$$ufzj
000890362 7001_ $$0P:(DE-HGF)0$$aMonti, Antonello$$b2
000890362 773__ $$0PERI:(DE-600)2014972-4$$a10.1007/s10458-020-09489-0$$gVol. 35, no. 1, p. 10$$n1$$p10$$tAutonomous agents and multi-agent systems$$v35$$x1387-2532$$y2021
000890362 8564_ $$uhttps://juser.fz-juelich.de/record/890362/files/Full%20text.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000890362 909CO $$ooai:juser.fz-juelich.de:890362$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000890362 9101_ $$0I:(DE-588b)36225-6$$60000-0002-7146-3868$$aRWTH Aachen$$b0$$kRWTH
000890362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180368$$aForschungszentrum Jülich$$b1$$kFZJ
000890362 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000890362 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890362 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000890362 9141_ $$y2021
000890362 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-28
000890362 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000890362 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAUTON AGENT MULTI-AG : 2018$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-08-28$$wger
000890362 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000890362 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000890362 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-28$$wger
000890362 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000890362 920__ $$lno
000890362 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000890362 9801_ $$aFullTexts
000890362 980__ $$ajournal
000890362 980__ $$aVDB
000890362 980__ $$aUNRESTRICTED
000890362 980__ $$aI:(DE-Juel1)IEK-10-20170217
000890362 981__ $$aI:(DE-Juel1)ICE-1-20170217