001     890362
005     20240712112913.0
024 7 _ |a 10.1007/s10458-020-09489-0
|2 doi
024 7 _ |a 1387-2532
|2 ISSN
024 7 _ |a 1573-7454
|2 ISSN
024 7 _ |a 2128/27640
|2 Handle
024 7 _ |a altmetric:104385237
|2 altmetric
024 7 _ |a WOS:000611534100001
|2 WOS
037 _ _ |a FZJ-2021-00907
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Dähling, Stefan
|0 0000-0002-7146-3868
|b 0
|e Corresponding author
245 _ _ |a Enabling scalable and fault-tolerant multi-agent systems by utilizing cloud-native computing
260 _ _ |a Dordrecht [u.a.]
|c 2021
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618832922_17985
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Multi-agent systems (MAS) represent a distributed computing paradigm well suited to tackle today’s challenges in the field of the Internet of Things (IoT). Both share many similarities such as the interconnection of distributed devices and their cooperation. The combination of MAS and IoT would allow the transfer of the experience gained in MAS research to the broader range of IoT applications. The key enabler for utilizing MAS in the IoT is the ability to build large-scale and fault-tolerant MASs since IoT concepts comprise possibly thousands or even millions of devices. However, well known multi-agent platforms (MAP), e. g., Java Agent DE-velopment Framework (JADE), are not able to deal with these challenges. To this aim, we present a cloud-native Multi-Agent Platform (cloneMAP) as a modern MAP based on cloud-computing techniques to enable scalability and fault-tolerance. A microservice architecture is used to implement it in a distributed way utilizing the open-source container orchestration system Kubernetes. Thereby, bottlenecks and single-points of failure are conceptually avoided. A comparison with JADE via relevant performance metrics indicates the massively improved scalability. Furthermore, the implementation of a large-scale use case verifies cloneMAP’s suitability for IoT applications. This leads to the conclusion that cloneMAP extends the range of possible MAS applications and enables the integration with IoT concepts.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Razik, Lukas
|0 P:(DE-Juel1)180368
|b 1
|u fzj
700 1 _ |a Monti, Antonello
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1007/s10458-020-09489-0
|g Vol. 35, no. 1, p. 10
|0 PERI:(DE-600)2014972-4
|n 1
|p 10
|t Autonomous agents and multi-agent systems
|v 35
|y 2021
|x 1387-2532
856 4 _ |u https://juser.fz-juelich.de/record/890362/files/Full%20text.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:890362
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 0000-0002-7146-3868
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180368
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AUTON AGENT MULTI-AG : 2018
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21